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Abstract. RoboCanes-VISAGE consists of faculty and PhD students from
two universities in Miami, FL: the University of Miami (UM), Department
of Computer Science and Florida International University (FIU), School of
Computing and Information Sciences. Together, our research covers artificial
intelligence, robotics, human-robot interaction, and affective social comput-
ing. This paper describes our approach for the 2023 competition.

1 Introduction

Our team has designed, developed, and implemented its autonomous agent frame-
work and software from the ground up in both the 3D Soccer Simulation League and
the Soccer Standard Platform League (NAO robots) since 2010. This framework has
evolved to a flexible research platform that led to over 40 publications and shared
software (cf. section 4) over the years.

For RoboCup@Home, RoboCanes has teamed up with the VISAGE lab from
FIU to form the RoboCanes-VISAGE team. The VISAGE lab is led by Dr. Christine
Lisetti, a faculty from the School of Computing and Information Sciences at FIU
who is one of the founders of the Affective Computing research field. Dr. Lisetti’s
group is known for its research on social 3D Virtual Avatars.

We use Toyota’s HSR to leverage the latest progress in affective social computing
and socially intelligent agents, as well as using the latest technology in AI and
robotics to address the RoboCup@Home challenges. It is an excellent platform to
embody the integration of the UM RoboCanes agent with the FIU VIrtual Social
AGEnt (VISAGE).

The RoboCanes agent is mainly responsible for managing and controlling naviga-
tion, object manipulation, grasping, etc., while the VISAGE agent handles face and
facial expression recognition of the human interacting with the HSR, voice recogni-
tion and speech synthesis, and 3D-graphics for facial and gesture synthesis of the
VISAGE agent.

2 Research Focus

We propose to leverage and expand the latest research on social robotics in order
to enhance and personalize the capabilities of collaborative robots’ (co-robots) to
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communicate with humans using natural verbal and non-verbal communication tech-
niques. We will focus on co-robots’ communication and collaboration in the home
environment, where natural communication is of essence. Literature reveals that
a vast majority of research is focused on low-degree of freedom anthropomorphic
robots. We will develop our interactive agent on a high-degree of freedom hybrid
anthropomorhic robot.

The RoboCanes agent will be mainly responsible for managing and controlling
navigation, object manipulation, grasping, etc., while the VISAGE agent will handle
face and facial expression recognition of the human interacting with the HSR, voice
recognition and synthesis, and 3D-graphics for facial and gesture synthesis of the
VISAGE agent.

We will integrate and coordinate both agents toward a coherent and engaging
multimodal model of communication with the human user.

3 Innovative technology

Our group has made a variety of scientific contributions in the areas of artificial
intelligence, robotics, virtual agents/human-computer interaction, and with both
groups (UM, FIU) together also a first human-robot interaction (cf. section 3.4).

3.1 eEVA as a Real-time Multimodal Agent Human-Robot Interface
We have developed a multimodal human-robot interface [1] for Toyota’s Human Sup-
port Robot (HSR, designed to help people in homes or offices) which integrates the
RoboCanes agent and the Embodied Empathetic Virtual Agent (eEVA) developed
by FIU’s VISAGE lab. The RoboCanes agent is responsible for managing and con-
trolling navigation, object manipulation, and grasping, among other physical actions,
while the VISAGE agent is responsible for recognizing and displaying social cues in-
volving recognizing the user’s facial expression and speech, synthesizing speech with
lip-synchronization, and portraying appropriate facial expressions and gestures. Our
interface also allows the RoboCanes agent to send commands to the VISAGE agent
on where to direct its gaze.

We created a greeting context for the pilot study of our first social human-
HSR interactions with our RoboCanes-VISAGE interface by designing a small set of
greeting gestures to personalize the Toyota HSR with its users’ greeting preferences,
and to establish some initial rapport in preparation for more advanced studies in the
future. The Toyota HSR generates greeting gestures from four different cultures:
waving-hand (Western), fist-bump (informal Western), Shaka (Hawaii), and bowing
(Japan) greeting gestures. The HSR’s gesture greetings are performed based on (1)
the user’s spoken selection of one of the four greetings and (2) our pilot questionnaire
aimed to assess the impact of combining the robot and the virtual agent interface
on the user’s experience (e.g., feelings of enjoyment, boredom, annoyance, user’s
perception of the robot’s friendliness or of competence).

In human-human interaction subtle mirroring of nonverbal cues during conver-
sations promotes rapport building. Similarly, it could translate to human-robot in-
teraction to improve communication. Thus, we investigated whether the ability of
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a robot to mirror its user’s head movements and facial expressions in real-time can
improve the user’s experience with it. We piloted a study [2] to assess the impact of
face detection with posture mimicking and emotion mirroring on the user’s sense of
comfort and naturalness during their interaction with the robot. Each skill was first
performed separately with either Embodied Conversational Agent (ECA), robot’s
head or both performing the movements. Finally, both skills were combined in last
part of the experiments.

3.2 Toolbox: Low footprint reinforcement learning library RLLib

One of our main accomplishments is the creation of the RLLib tool package that we
have made available for other scientists. RLLib has been downloaded by other
peer researchers more than 5,000 times to date [3], a recognition of the sig-
nificance of our contribution to the scientific community. RLLib is a C++ template
library to learn behaviors and represent learnable knowledge using on/off policy RL
standard, and gradient temporal-difference learning algorithms in RL. It is an opti-
mized library for robotic applications that operates under fast duty cycles (e.g., ≤
30 ms). This is a significant difference to other available packages. RLLib has been
tested and evaluated on RoboCup 3D soccer simulation agents, physical NAO V4
humanoid robots, and Tiva C series launchpad microcontrollers to predict, control,
learn behaviors, and represent learnable knowledge. The implementation of the RL-
Lib library is inspired by the RLPark API, which is a library of temporal-difference
learning algorithms written in Java. RLLib garnered attention when presented at
RoboCup Symposium and has been used by third parties as well, e.g. on malware
detection by Bidoki et al. [4]. We will make use of the library for the HSR.

3.3 Motivational interviewing with intelligent virtual agents (IVA)

We developed a virtual counseling system which can deliver brief health interventions
via a 3D anthropomorphic speech-enabled interface – a new field for spoken di-
alog interactions with intelligent virtual agents in the health domain. We developed
our dialog system based on a Markov Decision Process (MDP) framework and opti-
mized it by using RL algorithms with data we collected from real user interactions.
The system begins to learn optimal dialog strategies for initiative selection and for
the type of confirmations that it uses during the interaction. We compared the unop-
timized system with the optimized system in terms of objective measures (e.g. task
completion) and subjective measures (e.g. ease of use, future intention to use the
system) and obtained positive results. The system is able to learn dialog strategies
for initiative and confirmation selection. Our contributions to the Spoken Dialog
Systems domain include the creation of a RL paradigm to the completely new
domain of behavior change - where our dialog length is 4-5 times longer and where
the nature of the dialog is less restricted than spoken dialog systems operated in
the tourist information domain. We contributed to the healthcare domain with
the first system to use speech as an input medium with a RL-based approach. Our
initial evaluation showed that the dialog managers that are optimized with RL have
the potential to reach optimal behavior, given enough training data [5, 6].
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3.4 Human-robot interaction with a humanoid robot

We combined a spoken dialog system that we developed to deliver brief health
interventions (cf. section 3.3) with a NAO robot. The dialog system is based on a
framework facilitating a MDP and is optimized using RL algorithms (we used our
own RLLib [3], cf. section 3.2). The spoken dialog system for the humanoid robot
was a novelty at that time and exists as a proof of concept. We anticipate that
the NAO robot will become a very likable and effective mode of delivery for brief
interventions on target behaviors such as poor diet, overeating, or lack of exercise,
among others. The appeal of the NAO to children makes it particularly suitable
to become a child’s favorite health coach, say, to discuss eating more fruits and
vegetables on a daily basis.

3.5 Knowledge representation and reasoning

This line of research combines modern symbolic knowledge representation and rea-
soning techniques from the Semantic Web domain with modern autonomous
robots. Knowledge should be represented in real-time (i.e., within ms) and de-
duction from knowledge should be inferred within the same time constraints. We
proposed an extended assertional formalism for an expressive SROIQ(D) Descrip-
tion Logic to represent asserted entities in a lattice structure [7]. This structure
can represent temporal-like information. Since the computational complexity of the
classes of description logic increases with its expressivity, the problem demands ei-
ther a restriction in the expressivity or an empirical upper bound on the maximum
number of axioms in the knowledge base. We have conducted experiments in the
RoboCup 3D Soccer Simulation League environment and provide justifications of the
usefulness of the proposed assertional extension. We showed the feasibility of our
new approach under real-time constraints and conclude that a modified FaCT++
reasoner empirically outperforms other reasoners within the given class of complex-
ity. We intend to use our approach with incremental reasoning on HSR to model
beliefs and interpret entities in uncertain environments in the near future.

3.6 Inverse Trajectory Planning (ITP)

Tracking and predicting a person’s movement in three dimensional space in order
to ascertain their current location and intended trajectory in the environment is a
difficult task. However, this knowledge would enable an agent to learn how to navi-
gate the environment without causing danger to a human that it is interacting with.
We developed a novel probabilistic framework based on von Mises distributions for
robotic systems to detect and predict a human pose. We implemented the frame-
work on the Toyota HSR robot and showed its capabilities on the task of following
a human.

3.7 Motion Planner with Geometric Heuristics

Traditionally, we used the MoveIt Motion Planning Framework. Last year, however,
in order to achieve more robust manipulation performance, we constructed a new
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motion planner for grasping and placing objects using geometric heuristics. Based
on a known set of sampled environments, we deduced geometric heuristics that
will always generate a solution for the grasp trajectory tailored to the environment
assumed by the heuristics. The planner first gets a bounding box provided by our
vision pipeline (cf. section 3.8). Then it computes the heuristics: (1) the decom-
posed angle in a desired frame and (2) the ratio of the dimensions from the position
and orientation of the bounding box. From these heuristics, our planner can decide
upon a combination of the base trajectory, gripper trajectory, and variations of grasp
orientation of the gripper. Our experiments show that our planner using geometric
heuristics outperforms the MoveIt planner with respect to overall execution dura-
tion (from the kickoff of the planning to the completion of the motion) and safer
trajectories (adaptive collision avoidance).

3.8 Vision Pipeline

Our vision pipeline allows the agent to detect an object in the world seamlessly.
Building on top of previous iteration of the pipeline, there is no more need for an
operator to collect object data manually. Our new data generation pipeline loads
meshes of the objects and automatically generates image data with various lighting
and rotational conditions. The data is then automatically cropped using GrabCut
[8], where the initial seed for GrabCut is the whole image as the image is without
background values. In contrast to a simple bounding box segmentation, GrabCut
eliminates the biases of the environment in which data is collected. The bounding box
does not need to be exact in order to obtain an accurate segmentation of the object
of interest. In the last step, a program augments the data by imposing the segmented
images in different pose configurations into background images, (e.g., images of the
environment where the object will be found). Once all the images of the segmented
object are reviewed by the operator, the data is sent to our supercomputer, Triton,
at the University of Miami. On the server, our instance of the YOLO convolutional
neural network learns how to recognize objects from the augmented data.

4 List of externally available components

We have produced and shared a variety of our system components to support various
research communities. Some of the components are part of the prior section (3) and
will only be short-listed here.

HapFACS3 is an open source software that enables (without prior knowledge
of computer graphics) the animation of speaking 3D virtual human-like characters
with physiologically realistic facial expressions that have been validated by experts in
facial expressions [9]. Specifically, HapFACS provides the ability to manipulate the
activation – in parallel or sequentially – of combinations of the smallest groups of
(virtual) facial muscles capable of moving independently in the human face, for the
creation of physiologically and socially believable speaking virtual agents.
3 http://ascl.cis.fiu.edu/hapfacs-open-source-softwareapi-download.html
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RLLib4 (cf. section 3.2) is a C++ template library to learn behaviors and rep-
resent learnable knowledge using on/off policy RL standard, and gradient temporal-
difference learning algorithms in RL.

is a software program designed to assess and develop agent behaviors in the
RoboCup 3D Soccer Simulation league.

5 Tasks Approaches for RoboCup 2023

5.1 Clean Up

The main objective of this task is for the robot to perceive the objects, categorize
them semantically, pick them up, and place them in the correct predefined location.

We tackled the navigation by using and adapting provided navigation tool and
defining task areas to precise the locations of deposit spots to different groups of
items. This is a general solution for all navigation for this task and the navigation
components for all other tasks of RoboCup 2023. Once the HSR has successfully
navigated to the area where different objects are initially placed, we use YOLO
network trained from our vision pipeline (cf. section 3.8) to classify objects from
images acquired by the HSR’s Xtion RGBD camera. Then, the class of the object
is parsed through feature heuristics such as color, shape, functionality, etc., and
categorized into a group of similar objects. The categories of the objects are drinks,
cleaning supplies, pantry items, fruit, snacks, and cutlery. Objects in each group are
placed in the same, predefined by the rule book location in a way that they don’t
fall on each other. After categorization, the HSR extracts a 3D bounding box from
RGBD images using Euclidean clustering, which can then be used for our geometric
heuristic motion planner (cf. section 3.7) to plan the picking trajectory.

Once the object is picked, if it is the first object picked during the task, the
HSR will generate a compact semantic mapping between feature topology and cor-
responding groups to which separate locations are assigned. Thus, before placing
each object, HSR queries the feature topology to decide which location to place the
object in.

5.2 Receptionist

The main objective of this task is to greet arriving guests, introduce them to the
host and each other, and offer them a spot to sit.

We use the same navigation component as the Clean Up task (cf. section 5.1).
Once HSR has reached the entrance it waits for a person’s arrival. We use a previously
trained on masked volunteer images, YOLO network and dlib library to recognize a
person present at the door. We use our Real-time Multimodal Agent Human-Robot
Interface to interact with guests to obtain information about their names and favorite
drink. Then again, we use our navigation to bring the guest to the sitting area in the
room and proceed with introductions where we use the head orientation to indicate
the person we are referring to.
4 https://mloss.org/software/view/502/



RoboCanes-VISAGE Team Description Paper 7

Similarly, as in the previous task (cf. section 5.1), we used a previously trained
YOLO network to determine the occupancy of the couch and the chairs in the room.
Once we locate a person, we compare it with the location of a predefined sitting
spot. That way we can determine if the person is sitting in a chair we want to offer
or not and if HSR should offer a different seat. Then we navigate to the spot across
from the seat, have the robot point at it, and offer it to the new guest.

6 Conclusion

Since RoboCanes-VISAGE acquired the Toyota HSR robot four years ago, our team
has kept up to speed with the latest technology of localization, navigation and
manipulation, and we were able to perform at extremely high level at WRS and past
RoboCup events. In addition, our team has evolved into a driving force of HRI and
motion planning research with the latest eEVA integration (cf. section 3.1) and ITP
(cf. section 3.6).
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A
3rd Party Robot’s Software

– YOLO
– Moveit!
– Snips NLU
– Rasa NLU
– TMC software
– PCL (Point Cloud Library)
– Google Speech API
– Amazon Polly
– Robot Operating System (ROS)

B
External Computing Devices

– Alienware 17 Gaming Laptop
– Processor: Intel Core i7-8750H CPU @ 2.20GHz x 12
– Graphics: GeForce GTX 1070/PCIe/SSE2
– OS Type: 64-bit
– Disk: 1.2 TB

Fig. 1: HSR in our lab, facing Toyota’s lego block challenge


