
Tech United Eindhoven @Home
2024 Team Description Paper

A. Aggarwal, M.F.B. van der Burgh, P. van Dooren, L. Messing,
R. Martin Núñez, S. Narla, G. Cordova Cardenas, M.L.M. van Vroonhoven,

and M.J.G. van de Molengraft

Eindhoven University of Technology,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

http://www.techunited.nl, techunited@tue.nl,

https://github.com/tue-robotics

Abstract. This paper provides an overview of the main developments of
the Tech United Eindhoven RoboCup@Home team. Tech United uses an
advanced world modeling system called the Environment Descriptor. It
allows straightforward implementation of localization, navigation, explo-
ration, object detection & recognition, object manipulation and robot-
robot cooperation skills based on the most recent state of the world.
Other important features include object and people recognition via deep
learning methods, a GUI & use of HSR’s display, natural language inter-
pretation & context-free grammar based speech recognition and a chat
interface combined with a custom keyboard and conversation engine. On-
going developments are focused on improving the perception pipelines.

1 Introduction

Tech United Eindhoven1 (established 2005) is the RoboCup student team of
Eindhoven University of Technology2 (TU/e), which joined the ambitious @Home
League in 2011. The RoboCup@Home competition aims to develop service robots
that can perform everyday tasks in dynamic and cluttered ‘home’ environments.
The team has been awarded multiple world vice-champion titles in the Open
Platform League (OPL) of the RoboCup@Home competition during previous
years, and world champion titles in 2019 and 2022 in the Domestic Standard
Platform League (DSPL).

Tech United Eindhoven consists of (former) PhD and MSc. students and staff
members from different departments within the TU/e. The software base is
developed to be robot independent, which means that the years of development
on AMIGO and SERGIO are currently being used by HERO. Thus, a large part
of the developments discussed in this paper have been optimized for years, whilst
the DSPL competition has only existed since 20173. All the software discussed

1 http://www.techunited.nl
2 http://www.tue.nl
3 https://athome.robocup.org/robocuphome-spl

2 Tech United Eindhoven

in this paper is available open-source at GitHub4, as well as various tutorials to
assist with implementation.

2 Environment Descriptor (ED)

The TU/e Environment Descriptor (ED) is a Robot Operating System (ROS)
based 3D geometric, object-based world representation system for robots. ED is
a database system that structures multi-modal sensor information and represents
this such that it can be utilized for robot localisation, navigation, manipulation
and interaction. Figure 1 shows a schematic overview of ED.

ED has been used on our robots in the OPL since 2012 and was also used this
year in the DSPL. Previous developments have focused on making ED platform
independent, as a result ED has been used on the PR2, Turtlebot, Dr. Robot
systems (X80), as well as on multiple other @Home robots.

User-specified World
Data Files

 - human-readable files
 - shape representations
 - heightmaps
 - object models
 - object relations
 -

ED

Plugins

Entity - 1
 Type: chair
 Pose: ...
 :

Entity - 102
 Type: unknown
 Pose: ...
 :

Localization

Kinect Integration

Navigation Interface

GUI server

/laser

Navigation
(e.g. MoveBase)

WebGui

Odometry

Robot location

/tf

Sensor location
/kinect

Fig. 1. Schematic overview of TU/e Environment Descriptor. Double sided arrows
indicate that the information is shared both ways, one sided arrows indicate that the
information is only shared in one direction.

ED is a single re-usable environment description that can be used for a multi-
tude of desired functionalities such as object detection, navigation and human
machine interaction. Improvements in ED reflect in the performances of the sep-
arate robot skills, as these skills are closely integrated in ED. This single world
model allows for all data to be current and accurate without requiring updating
and synchronization of multiple world models. Currently, different ED plug-ins
exist that enable robots to localize themselves, update positions of known ob-
jects based on recent sensor data, segment and store newly encountered objects
and visualize all this in RViz and through a web-based GUI, as illustrated in
Figure 6. ED allows for all the different subsystems that are required to perform
challenges to work together robustly. These various subsystems are shown in
Figure 2, and are individually elaborated upon in this paper.

4 https://github.com/tue-robotics

2. ENVIRONMENT DESCRIPTOR (ED) 3

ED
(world model)

Localization

Navigation &
Exploration

Position

People
recognitionPeople entities

Human robot
interaction

(display, telegram, GUI)

Action server
Queried infoCommand

Action information

Map

Position

Map
Plan & progress

SegmentationClassification
Object entities

Object lables

Object entities

Object entities
Manipulation

Fig. 2. A view of the data interaction with robot skills that ED is responsible for.

2.1 Localization, Navigation and Exploration

The ed localization5 plugin implements AMCL based on a 2D render of the cen-
tral world model. With use of the ed navigation plugin6, an occupancy grid is de-
rived from the world model and published. With the use of the cb base navigation
package7 the robots are able to deal with end goal constraints. The ed navigation
plugin allows to construct such a constraint w.r.t. a world model entity in ED.
This enables the robot to navigate not only to areas or entities in the scene, but
to waypoints as well. Figure 3 shows the navigation to an area. Modified versions
of the local and global ROS planners available within move base are used.

Fig. 3. A view of the world model created with ED. The figure shows the occupancy
grid as well as classified objects recognized on top of the cabinet.

2.2 Detection & Segmentation

ED enables integrating sensors through the use of the plugins present in the
ed sensor integration package. Two different plugins exist:

5 https://github.com/tue-robotics/ed_localization
6 https://github.com/tue-robotics/ed_navigation
7 https://github.com/tue-robotics/cb_base_navigation

4 Tech United Eindhoven

1. laser plugin: Enables tracking of 2D laser clusters. This plugin can be used
to track dynamic obstacles such as humans.

2. kinect plugin: Enables world model updates with use of data from a RGBD
camera. This plugin exposes several ROS services that realize different func-
tionalities:

(a) Segment : A service that segments sensor data that is not associated with
other world model entities. Segmentation areas can be specified per entity
in the scene. This allows to segment object ‘on-top-of’ or ‘in’ a cabinet.
All points outside the segmented area are ignore for segmentation.

(b) FitModel : A service that fits the specified model in the sensor data of a
RGBD camera. This allows updating semi-static obstacles such as tables
and chairs.

The ed sensor integration plugins enable updating and creating entities. How-
ever, new entities are classified as unknown entities. Classification is done in
ed perception plugin8 package.

2.3 Object grasping, moving and placing

The system architecture developed for object manipulation is focused on grasp-
ing. In the implementation, its input is a specific target entity in ED, selected by
a Python executive and the output is the grasp motion joint trajectory. Figure
4 shows the grasping pipeline.

Fig. 4. Custom grasping pipeline base on ED, MoveIt and a separate grasp point
determination and approach vector node.

MoveIt! is used to produce joint trajectories over time, given the current con-
figuration, robot model, ED world model (for collision avoidance) and the final
configuration. The grasp pose determination uses the information about the po-
sition and shape of the object in ED to determine the best grasping pose. The
grasping pose is a vector relative to the robot. Placing an object is approached
in a similar manner to grasping, except for that when placing an object, ED is
queried to find an empty placement pose.

8 https://github.com/tue-robotics/ed_perception

3. IMAGE RECOGNITION 5

3 Image Recognition

The image recognition packages apply state of the art image classification tech-
niques based on Convolutional Neural Networks (CNN).

1. Object recognition: Tensorflow™ with retrained top-layer of a Inception
V3 neural network.

2. Face recognition: OpenFace9, based on Torch.
3. Pose detection: OpenPose10.

Our image recognition ROS packages are available on GitHub11 and as Debian
packages: ros-noetic-image-recognition. Our ongoing efforts are to upgrade these
to a YOLOv8 based pipeline for object recognition and pose detection, and
FaceNet for face recognition, all implement in PyTorch 2.1 with TensorRT.

4 People Recognition

As our robots need to operate and interact with people in a dynamic environ-
ment, our robots’ need people detection skills. For this a generalized system
capable of recognizing people in 3D is developed. An RGB-D camera is used to
capture the scene information after which a recognition sequence is completed
in four steps. First, people are detected in the scene using OpenPose and if their
faces are recognized as one of the learned faces in the robot’s database, they are
labeled using their known name using OpenFace. The detections from OpenPose
are associated with the recognitions from OpenFace by maximizing the IoUs of
the face ROIs. Then, for each of the recognized people, additional properties
such as age, gender and the shirt color are identified. Furthermore, the pose
keypoints of these recognitions are coupled with the depth information of the
scene to re-project the recognized people to 3D as skeletons. Finally, information
about the posture of each 3D skeleton is calculated using geometrical heuristics.
This allows for the addition of properties such as “pointing pose” and additional
flags such as ‘is waving’, ‘is sitting’, etc.

4.1 Pointing detection

In the previous section, our approach to people recognition is explained. This
recognition includes information about the posture of each 3D skeleton. Once
the people information is inserted into the world model, additional properties
can be added to the persons that take also other entities in the world model into
account, e.g. ‘is pointing at entity’. This information is used by the toplevel state
machines to implement challenges. However an additional check based on spatial
queries is inserted to ensure that the correct operator is found. By using such

9 https://cmusatyalab.github.io/openface/
10 https://github.com/CMU-Perceptual-Computing-Lab/openpose
11 https://github.com/tue-robotics/image_recognition

6 Tech United Eindhoven

a query it is possible to filter out people based on their location. Finally, to
determine at which entity the operator is pointing, ray-tracing is implemented.
Figure 5 shows an example of the ray-tracing.

Fig. 5. Ray-tracing based on pose detection with AMIGO.

5 Human-Robot Interface

We provide multiple ways of interacting with the robot in an intuitive manner:
WebGUI (Section 5.1), Speech Recognition (Section 5.2), Telegram™ interface
(Section 5.3), and the Head Display (Section 5.4).

5.1 Web GUI

In order to interact with the robot, apart from speech, we have designed a web-
based Graphical User Interface (GUI). This interface uses HTML512 with the
Robot API written in Javascript and we host it on the robot itself.

Fig. 6. Illustration of the 3D scene of the WebGUI with AMIGO. User can long-press
objects to open a menu from which actions on the object can be triggered

Figure 6 represents an instance of the various interactions that are possible with
the Robot API.

12 https://github.com/tue-robotics/tue_mobile_ui

5. HUMAN-ROBOT INTERFACE 7

5.2 Speech Recognition

For natural interaction using spoken commands, we use Picovoice13 as our Auto-
matic Speech Recognition (ASR) engine. We prepare various (Feature) Context-
free Grammar (FCFG) based language models for the ASR model, some specific
to the challenges and the rest general and have developed an interface that allows
lazy loading of these models in the challenges.

5.3 Telegram™

The Telegram interface14 to our robots is a ROS wrapper around the python-
telegram-bot library. The software exposes four topics, for images and text resp.
from and to the robot. The interface allows only one master of the robot at a time.
All the reasoning behind this interface is handled by the conversation engine.

Conversation Engine
The conversation engine15 bridges the gap between text input and an action
planner (called action server). The input text is parsed according to a FCFG,
resulting in an action description in the form of a nested mapping. In the action
description, (sub)actions and their parameters are filled in. This may include
references such as “it”. Based on the action description, the action server tries
to devise a sequence of actions and parameterize those with concrete object IDs.
Futhermore, the conversation engine engages with the user for additional input
to fill in missing information, and keeps the user “informed” whilst actions are
being performed by reporting on the current subtask.

Custom Keyboard, Telegram HMI 16

To reduce the operator error, we only present the user with a limited number of
buttons in the Telegram app using its custom keyboards feature. This feature has
been employed to compose commands word-for-word. After the user has entered
a partial command, for example “Bring me the ...” they are presented with only
those words that might follow that text according to the grammar, eg. “apple”,
“orange” etc. This process iterates until a full command has been composed.

5.4 Head Display

For most people, especially people who do not deal with robots in their day-
to-day life, interaction with robots is not as easy as one would like it to be. To
remedy this, the head display (pre-integrated in the Toyota HSRs) of HERO
is used17. By default, our Tech United @Home logo is shown on the screen, as

13 https://github.com/tue-robotics/picovoice_ros
14 https://github.com/tue-robotics/telegram_ros
15 https://github.com/tue-robotics/conversation_engine
16 https://github.com/tue-robotics/hmi_telegram
17 https://github.com/tue-robotics/hero-display

8 Tech United Eindhoven

depicted in Figure 7. When the robot is speaking the spoken text is displayed,
when the robot is listening a spinner along with an image of a microphone is
shown. It is also possible to display (live) images for various tasks.

Fig. 7. The default status of HERO’s head display.

6 Re-usability of the system for other research groups

Tech United takes great pride in creating and maintaining open-source software
and hardware to accelerate innovation. Tech United initiated the Robotic Open
Platform website18, to share hardware designs. All our software is available on
GitHub19. All packages include documentation and tutorials. Tech United and
its scientific staff have the capacity to co-develop (15+ people), maintain and
assist in resolving questions.

References

1. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

2. D. Fox. Adapting the sample size in particle filters through kld-sampling. The
International Journal of Robotics Research, 22(12):985–1003, 2003.

3. D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Magazine on Robotics & Automation, 4(1):23–33, 1997.

4. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1–9, 2015.

5. Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. Openface: A
general-purpose face recognition library with mobile applications. Technical report,
CMU-CS-16-118, CMU School of Computer Science, 2016.

18 http://www.roboticopenplatform.org
19 https://github.com/tue-robotics

A. HSR’S SOFTWARE AND EXTERNAL DEVICES 9

A HSR’s Software and External Devices

We use a standard Toyota™ HSR robot. To differentiate our unit, we named
it HERO. We wanted to link it’s name to our AMIGO and SERGIO domestic
service robots.
An overview of the software used by the Tech United Eindhoven @Home robots
can be found in Table 1. All our software is developed open-source at GitHub20.

Table 1. Software overview

Operating system Ubuntu 20.04 LTS Server
Middleware ROS Noetic [1]
Simulation Gazebo
World model* Environment Descriptor (ED), custom

https://github.com/tue-robotics/ed

Localization* Monte Carlo [2] using Environment Descriptor (ED), custom
https://github.com/tue-robotics/ed_localization

SLAM Gmapping
Navigation* CB Base navigation, custom

https://github.com/tue-robotics/cb_base_navigation

Global: custom A* planner
Local: modified ROS DWA [3]

Arm navigation MoveIt!
Object recognition* Inception based custom DNN [4], custom

https://github.com/tue-robotics/image_recognition

People recognition* Custom implementation using contour matching
https://github.com/tue-robotics/people_recognition

Face recognition* OpenFace [5], custom
https://github.com/tue-robotics/image_recognition

Speech recognition* Picovoice, custom
https://github.com/tue-robotics/picovoice_ros.git

Speech synthesis Toyota™ Text-to-Speech
Task executors* SMACH, custom

https://github.com/tue-robotics/tue_robocup

External Devices HERO relies on the following external hardware:

– Official Standard Laptop
– USB power speaker
– Gigabit Ethernet Switch
– Wi-Fi adapter

Cloud Services HERO does not use any cloud services
20 https://github.com/tue-robotics

