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Abstract. This paper presents the b-it-bots@Home team and one of its
mobile service robots called Lucy – a Human Support Robot manufac-
tured by Toyota. We present an overview of our robot control architecture
and the robot’s capabilities, namely the added functionalities from var-
ious research and development projects carried out by the Autonomous
Systems group at Hochschule Bonn-Rhein-Sieg.

1 Introduction

The b-it-bots@Home team1 was established in 2007 and functions as part of
the international Autonomous Systems master’s program at Hochschule Bonn-
Rhein-Sieg (HBRS)2. Our team consists of bachelor’s, master’s, and PhD stu-
dents who are advised by three tenured professors, such that we have a long
history of participation at RoboCup@Home competitions.

Our initial robot Johnny, a VolksBot platform, was used by the team from
2008 to 2010. Since 2011, the b-it-bots@Home team has been working with Jenny,
a Care-O-Bot 3, and has successfully participated in multiple competitions, in-
cluding RoboCup, German Open, and RoCKIn. In February 2018, the team
added Lucy, a Toyota HSR, to its available platforms, and as of 2019 is partici-
pating in the RoboCup@Home Domestic Standard Platform League (DSPL).

In 2022 the team participated in the HEART-MET competition, securing an
impressive array of awards: 1st place in Person Detection and Gesture Recog-
nition, 2nd place in Object Detection, and 3rd place in Activity Recognition,
ultimately claiming the Overall 1st place. The momentum continued into 2023,
with our team dominating the HEART-MET Field Campaign in Florence by se-
curing 1st place victories in all three tracks: Object Detection, Person Detection,

1 https://a2s-institute.de/b-it-bots/b-it-botshome/
2 http://www.h-brs.de
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and Object Sorting. At the HEART-MET 2023 Physical Assistive Robot Chal-
lenge competition, our team won 2nd place in the Item Delivery episode. Lastly,
in the ERL(European Robotics League) competition 2023, our team excelled in
both the social acceptance and Open Door episodes, claiming 1st place in both
categories.

While participation at competitions has always been an integral part of our
activities, we foster a research-oriented culture above all, such that we have
several ongoing PhD and master’s thesis projects that are very closely related
to the team. In parallel, one of our goals is to deploy service robots to real-life
applications. Since our research interests are highly linked to our experiences in
the field, our software both contributes to and benefits from the ongoing research
projects taking place at our university.

The rest of this paper presents some of the work carried out by current and
previous team members, such that we focus on some of our main research inter-
ests: execution monitoring, fault detection, and diagnosis, robust manipulation,
real-time and adaptive perception, as well as knowledge-based reasoning.

2 Manipulation

2.1 Manipulation Trajectory Representation and Execution

To increase the predictability of our physical robots during manipulation, we ac-
quire manipulation trajectories using learning by demonstration. In particular,
we use dynamic motion primitives (DMPs) [1] to represent Cartesian motion tra-
jectories, which are acquired by tracking a marker array. As the reachability of
the HSR’s manipulator is limited, we synchronize arm and base motions when
imitating demonstrated trajectories, as described in [2]. When using demon-
strated trajectories, we additionally use MoveIt!3 for simple motions between
predefined positions, such as moving to a pregrasp position or retrieving the
arm back after executing a demonstrated trajectory.

Since the execution of demonstrated trajectories requires base motions, a
rather accurate robot odometry is needed to prevent base drift. In the case of the
HSR’s simulation, this has been problematic since the odometry is less accurate
than on the physical robot; the inaccurate odometry leads to significant base
drift, particularly for manipulation goals that require considerable base motion.
For this purpose, we primarily use MoveIt! in simulation, namely trajectory
planning is performed during execution; this has the disadvantage of increasing
the execution time, but the execution error is generally lower than with our
controller for executing DMPs.

2.2 Object Grasping

To grasp objects of varied shapes and sizes, we use an adaptive strategy that
chooses either a sideways or a top-down grasp for a given object. We particularly

3 https://moveit.ros.org
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use a heuristic according to which a top-down grasp is selected if the height of
an object, which is estimated based on the object’s 3D bounding box, is below a
predefined threshold; otherwise, a sideways grasp is selected. To align the robot’s
gripper for grasping, the orientation of an object is determined as the direction
of the object’s principal component when a top-down grasp is used, and as the
object’s planar orientation in the case of a sideways grasp.

We are additionally working towards a learning-based method [3], which
has been verified for a small group of objects and does not require hand-coded
heuristics for choosing a grasping strategy. This method uses dedicated grasping
models that have been learned for particular objects or object classes; when
generalizing to new object classes, information about object similarity as encoded
in an object ontology is combined with any prior generalization experiences.

3 Perception

3.1 Object Localization and Plane Detection

We detect 3D objects in the robot’s view using an algorithm that processes an
RGB-D point cloud. Detections from the algorithm can be used to avoid small
objects lying on the floor, which are undetected by a 2D range sensor during
navigation, or to obtain the poses of objects to be picked up. The algorithm
expects a few parameters, such as the ground plane height, the maximum size
of objects to be detected, and the minimum closeness to occupied cells in an
occupancy grid map; these help in filtering out large objects, such as tables
and walls, as well as objects that are very close to or touching large objects. The
results from the object recognition model is used to extract object points from the
original RGB-D cloud and estimate the objects’ 3D positions. We use Eucledian
clustering on the filtered and downsampled point cloud data to detect objects.
The algorithm can also be configured to maintain a cache of previously detected
objects for a certain duration of time; this particularly helps in avoiding obstacles
on the ground after they have gone out of the robot’s view during navigation.
The algorithm is implemented using the Point Cloud Library (PCL).4,5 For plane
detection, we use the RANSAC algorithm [4] to fit a plane model to detected
objects and find horizontal surfaces, such as tables or shelves, associated with
the detected objects.

3.2 Object Recognition

The architecture of our object detection pipeline provides a standard and ex-
tensible way of integrating new models and approaches into our code base; new
implementations only need to extend the ImageDetector base class for perform-
ing detection. Our current instantiation of the pipeline first extracts RGB data

4 http://docs.pointclouds.org/
5 https://github.com/b-it-bots/mas_domestic_robotics/tree/kinetic/mdr_

perception/mdr_cloud_object_detection
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from an RGB-D point cloud, an object detection model (shown in table 1), is
then used to detect objects in the image. The detection result returned from the
object detection model is then used in object localization, as explained in the
previous section.

Model Classes Use Case Reference

YOLOv5 Door, Handle Door Opening/ Clossing [5]

YOLOv5 YCB classes Object Picking [5]

SSD MobileNetV2 COCO classes Person Detetction [6]

SSD BlazeFace Face Face Detection [7]

Table 1: Used Detection Models

3.3 Face Recognition

Our methodology revolves around employing a sophisticated face recognition
library that operates seamlessly in real-time by harnessing facial embeddings,
enhancing the identification process. We use a real-time vision stack that per-
forms face detection, gender classification, and emotion classification simultane-
ously in a single step. Our pipeline initiates by employing MediaPipe’s robust
face detection model 6 to pinpoint human faces within the input camera stream.
MediaPipe identifies facial regions swiftly and accurately, enabling subsequent
processing steps.

In our perception stack we have integrated Face Recognition API 7 swiftly
which performs facial identification using a singular step approach. This API em-
ploys pre-trained neural networks to generate face encodings, numerical represen-
tations capturing distinct facial features. These encodings, representing unique
vectors for each face, enable seamless and rapid identification.

In addition to face recognition, our system integrates a facial expression
recognition module capable of discerning emotions such as joy, surprise, sad-
ness, neutrality, and anger. This enriches the understanding of facial dynamics

6 https://developers.google.com/mediapipe/solutions/vision/face_detector/

python)
7 https://github.com/ageitgey/face_recognition)
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beyond mere identification. This component is also being used by the SocRob
team in the RoboCup@Home OPL league8

4 Planning, Reasoning, and Operation Monitoring

4.1 Task Planning

Robots operating in dynamic environments have to be designed to be robust
and flexible; we are thus working towards a flexible plan-based architecture for
high-level reasoning and recovery. In a first step, we have integrated ROSPlan9

as a planning framework that covers the whole lifecycle of a task, starting from
problem generation, task planning, plan dispatching, and plan monitoring.

In order to extend the plan generation with expert knowledge, we are also
working towards integrating the hierarchical task network planner JSHOP210

into ROSPlan. The motivation for this comes from the work by Awaad et al.
[8], as well as the task planning, execution, and monitoring system developed by
Shpieva and Awaad [9], where JSHOP2 has been used successfully.

4.2 High-Level Knowledge Representation and Reasoning

In order to perform purposeful tasks, domestic robots need to be able to un-
derstand their environment and reason about it. While several aspects about
the world, such as the locations of objects or people, have to be estimated and
updated dynamically as a robot is operating, it would be suboptimal to let a
robot learn everything about the environment from scratch; instead, it is more
pragmatic to guide the robot’s reasoning process by using an ontology that
represents encyclopedic knowledge about the world (namely known facts about
objects, their properties, and relations between each other). In this respect, we
are working towards an ontology for domestic environments that is motivated by
the KnowRob ontology [10], but represents a stripped-down version of it. Just
as KnowRob, our ontology is written in the OWL Web Ontology Language11,
such that we are working on an RDFLib-based12 interface for interacting with
the encoded knowledge.

4.3 Execution and Component Monitoring

Due to the complexity of domestic environments, such as the high variability of
objects and the presence of other agents, domestic robots are quite failure-prone.
This raises the need for both appropriate recovery strategies during execution as
well as learning mechanisms for improving the execution process, but also means

8 https://github.com/socrob/face_classification
9 https://github.com/KCL-Planning/ROSPlan

10 http://www.cs.umd.edu/projects/shop/description.html
11 www.w3.org/TR/owl-ref/
12 https://github.com/RDFLib/rdflib
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that robots need to be transparent about their actions so that their policies can
be understood more easily. In order to model and express action execution knowl-
edge, we are using an action execution library13 for (i) representing knowledge
about actions, namely their inputs, outputs, and known failure cases and (ii)
logging execution-relevant data. Motivated by the work in [11] and [12], we are
currently using this library for executing placing actions. In addition to that, we
are in the process of adapting the component monitoring framework described in
[13] so that component failures can be detected early enough, which should allow
us to prevent undesired events (e.g. the robot colliding with a table due to a mal-
functioning arm joint) and, if automatic recovery is not possible, communicate
such failures to a human operator.

5 Human Robot Interaction

For robots in domestic environments, interaction with humans, particularly in a
verbal manner, is an indispensable component. This section provides an overview
of how we are addressing the challenge of understanding humans and responding
to them.

5.1 Speech Recognition

For detecting speech from an audio snippet and transforming it into a machine-
readable format, we differentiate between online and offline methods. Online
speech recognition is conducted using Google’s speech recognition API 14, thereby
leveraging the model’s high recognition rates and robustness; however, since we
cannot assume that our robot will always have a stable internet connection, we
have also integrated PocketSphinx15, a speech recognition library developed by
Carnegie Mellon University, for understanding commands even when our robot
is offline. The results of a project that has compared open source speech recogni-
tion toolkits for domestic environments16 point out that the speech recognition
toolkit Kaldi [14] is more suitable for everyday household tasks; we are thus
in the process of switching from PocketSphinx to Kaldi as our primary offline
speech recognition tool.

5.2 Speech Matching

Even with a highly accurate speech recognition model, recognized speech might
be faulty or incomplete, which generally means that it needs to be further pro-
cessed by comparing what was recognized with what a robot already knows

13 https://github.com/b-it-bots/action-execution
14 https://cloud.google.com/speech-to-text/
15 https://github.com/cmusphinx/pocketsphinx
16 Conducted as part of the RoboLand project: https://www.h-brs.de/de/roboland-

telepraesenz-roboter-im-haeuslichen-lebens-und-pflegearrangement-von-personen-
mit-demenz-im
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(such as a database of known questions and commands) and reacting to that
accordingly. For comparing recognized and known speech, we use the Leven-
shtein distance, which is a string comparison metric that measures the difference
between two sentences; if the similarity between the recognized speech and a
sentence in a previously created database is above a certain threshold, the robot
would reply in case of a question or execute a corresponding action in case of a
command.

Although the Levenshtein distance provides acceptable practical performance,
we have additionally implemented Double Metaphone, which is an approach for
indexing words by sound, as an additional speech verification method. This al-
lows us to refer to the results of two different methods, thereby increasing the
robustness of the system even if the speech recognition was only partially correct.

5.3 Natural Language Understanding

As part of an ongoing project, we are also investigating natural language pro-
cessing toolkits for use in our robots. The project is still ongoing, but some
preliminary results suggest that SocRob’s NLU ROS package17 is a promising
candidate, so we have started integrating it for further testing.

5.4 Visual Interaction

We use the robot’s integrated display to show relevant images during its inter-
actions with humans. The robot’s display becomes a canvas for visual commu-
nication, showcasing images that are directly pertinent to the conversation or
task at hand. This feature allows for a more dynamic and intuitive exchange
between humans and robots. Whether it’s displaying step-by-step instructions,
providing visual aids for better comprehension, or presenting relevant data in a
comprehensible manner, this feature significantly elevates the user experience.

5.5 Gesture Recognition

To achieve gesture recognition we use MediaPipe holistic landmarks detection
18 to obtain landmarks from the face and hands which are then passed on to a
Convolutional Neural Network (CNN) architecture for gesture recognition, with
accuracies of 90% on a custom gesture dataset. Currently, our models are able
to identify two sets of gestures including numbers from 1 to 5, as shown in figure
1 and gestures like nodding, stop signs, thumbs down, waving, pointing, calling
someone, thumbs up, waving someone away, and shaking head. These allow users
to interact with the robot non-verbally. For example, the user can select items
from a menu by indicating the number corresponding to the item, or can even
confirm his/her order using a thumbs-up sign.

17 https://github.com/socrob/mbot_natural_language_processing
18 https://developers.google.com/mediapipe/solutions/vision/holistic_

landmarker
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Fig. 1: Gestures of numbers 1 to 5

6 Interacting with doors

In the latest series of advancements, our team has focused on developing and
refining the capability of our humanoid robot, Lucy, to open and close doors
autonomously. This functionality is crucial for enhancing the robot’s ability to
navigate and operate in human environments, especially in domestic settings.

6.1 Sensor Integration and Door Detection

Initially, we integrated advanced sensory capabilities to enable Lucy to detect
and localize doors and their levers within its environment. Using a combination
of RGB-D sensors and advanced computer vision algorithms, Lucy can now
accurately identify the door and its lever’s position and orientation.

6.2 Kinematic Planning for Door Manipulation

The next challenge was to enable Lucy to interact with doors physically. This
involved developing a kinematic model that allows for precise manipulation of
door handles. By integrating this model with our existing control architecture,
Lucy can move its manipulator arm toward door levers, adjust its grip, and apply
the necessary forces to turn door handles and push or pull doors.

6.3 Adaptive Control Strategies

We implemented adaptive control strategies to ensure successful door manipu-
lation in various scenarios. These strategies enable Lucy to adjust its approach
based on the type of door handle and the force required to open or close the
door.

Our successful implementation of the door opening and closing task marks
a significant milestone in our project, paving the way for more complex and
practical applications in domestic environments.
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7 Open-Source Contributions

Our team is committed to making our work accessible to the robotics community;
most of our code is thus available through our official GitHub organization.19

Our HSR-specific code is not publicly available to the nature of our contract
with Toyota, but all of our core robot-independent software can be found there,
including the following major components:

– mas domestic robotics: Core robot-independent components for domestic
applications (https://github.com/b-it-bots/mas_domestic_robotics)

– mas execution manager: A library for creating state machines and man-
aging their execution [15] (https://github.com/b-it-bots/mas_execution_
manager)

– mas knowledge base: A library exposing interfaces for interacting with an
OWL ontology, the ROSPlan knowledge base, and mongodb store (https:
//github.com/b-it-bots/mas_knowledge_base)

– mas perception libs: Robot-independent perception components, includ-
ing a Boost Python wrapper to allow executing point cloud processing func-
tionalities from Python, since the original implementation uses the C++-
based PCL (https://github.com/b-it-bots/mas_perception_libs)

– ros dmp: A library for learning and executing dynamic motion primitives
(https://github.com/b-it-bots/ros_dmp)

– dataset interface: A library with various utilites for data augmention,
object detection, and face recognition (https://github.com/b-it-bots/
dataset_interface)

– explainable-robot-execution-models: An implementation of the learning-
based object grasping algorithm described above (https://github.com/
alex-mitrevski/explainable-robot-execution-models)

– ftsm: A library for generically implementing components with a so-called
fault tolerant state machine (https://github.com/ropod-project/ftsm)

A diagram showing the interaction between our main open-source components
is shown in Fig. 2. We additionally have a list of freely available tutorials for
using some of our components.20

8 Conclusions and future work

This paper presents the b-it-bots@Home team and various functionalities that
are in active use and development by the team. While the described functionali-
ties have already been integrated into the HSR and in its simulation, the integra-
tion and development of new functionalities is a continuous process driven by our
research goals, which are reflected through several ongoing PhD projects, mas-
ter’s theses, and funded projects. Our ongoing work is aligned with the aspects

19 https://github.com/b-it-bots
20 https://github.com/b-it-bots/mas_tutorials
21 Diagram taken from https://github.com/b-it-bots/mas_domestic_robotics
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Fig. 2: Various components developed and/or used by our team21

described in this paper and includes long-term experience acquisition, execution
monitoring, and communicating robot intentions for transparent execution, as-
pects that are particularly important for increasing the practical acceptance of
domestic robotics.
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Lucy (Toyota HSR) Software and External Devices

Fig. 3: Lucy:
Toyota HSR

We use a standard Human Support Robot (HSR) from Toyota.
No modifications have been applied.

Robot’s Software Description

For our robot, we are using the following software:

– Platform: Robot Operating Systems (ROS) [16]
– Navigation: Built-in ROS-based functionalities provided

by Toyota
– Arm control : In-house imitation learning framework and

MoveIt!22

– Task planning : ROSPlan using the LAMA planner
– Object recognition: Single-shot Multi-box Detector (SSD)

[17]
– Speech recognition: Google Speech (online), PocketSphinx

and Kaldi (offline)
– Natural language processing : SocRob’s NLU23

– Gender recognition: In-house CNN model24

Most of our software is publicly available at https://github.
com/b-it-bots.

External Devices

Lucy relies on the following external hardware:

– Alienware 15”, Intel Core i9 processor and GTX 1080

Cloud Services

Lucy connects to the following cloud services:

– Speech recognition: Google Speech25

22 moveit.ros.org
23 https://github.com/socrob/mbot_natural_language_processing
24 https://github.com/oarriaga/face_classification
25 https://cloud.google.com/speech-to-text/


