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Abstract. This paper provides an overview of the robot Albert and
the innovative strategies devised by the Hummus team for the Open
Platform League (OPL) 2024 competition held in Eindhoven, Nether-
lands. Albert, a robotic arm built on the Franka Emika platform and
affixed to a mobile base, serves as the focal point of our efforts. Our
team, consisting of PhD students from the Cognitive Department of the
Technical University of Delft, embarked on its inaugural participation in
the RoboCup@Home league. Addressing key challenges inherent to the
RoboCup@Home domain, namely social navigation, safe manipulation,
and adaptive task assignment, we present our novel approaches developed
to tackle these issues. Leveraging our collective expertise, we sought to
overcome obstacles and contribute to the advancement of robotic capa-
bilities in domestic environments. Motivated by the unique opportunity
provided by RoboCup to rigorously test our scientific methodologies and
research findings, our involvement in the competition signifies a pivotal
moment for the Hummus team. As we navigate this competitive arena
for the first time, we aim to showcase the potential of our innovative
solutions and contribute to the broader scientific community.

Website: https://tud-hummus.github.io/

1 Introduction

Hummus is an innovative and dynamic team comprised of Ph.D. scholars from
the Cognitive Robotics department at TU Delft. As pioneers in the field of
cognitive robotics, our team brings together a wealth of knowledge, passion,
and expertise to tackle the intricate challenges of the RoboCup@Home league.
Our journey is rooted in the belief that robotics, particularly in complex world
scenarios, requires not only technical excellence but also a deep understanding
of cognitive processes and human interaction.

At the heart of the Hummus team is the Cognitive Robotics (CoR) de-
partment at TU Delft, known for its commitment to advancing the frontiers
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of robotics by exploring high-level solutions to real-world problems. As Ph.D.
candidates within this department, we are driven by a shared vision—to rev-
olutionize robotics by developing intelligent systems capable of navigating the
complexities of everyday environments. Our focus extends beyond mere technical
functionality; we strive to imbue our robots with cognitive capabilities, enabling
them to comprehend, learn, and interact seamlessly with the human world.

In a landscape marked by high-level challenges, we embrace the opportunity
presented by the RoboCup@Home league. The RoboCup@Home league focuses
on advancing and implementing autonomous service and assistive robot tech-
nology, which is crucial for future applications in personal domestic settings [1].
This competition serves as a testing ground for our research-driven innovations,
where our robots are not only tasked with performing intricate tasks but also
with understanding and responding to the diverse and unpredictable nature of
human environments. As members of the Hummus team, we are excited to show-
case our dedication to pushing the boundaries of cognitive robotics and providing
real-world solutions to the complex scenarios posed by the competition. In the
following parts of the document, we are going to elaborate more on our robot’s
features and our accomplishments.

2 Our team’s main principles and accomplishments

The robotics team’s approach to mobile manipulation is guided by a philosophy
rooted in simplicity, collaboration, and the integration of human and machine
capabilities. Embracing simplicity as the cornerstone of reliability, the team ad-
vocates for straightforward solutions to enhance robot robustness, ease mainte-
nance, and streamline troubleshooting. They actively leverage human cognitive
abilities in decision-making processes, avoiding sole reliance on autonomous sys-
tems and facilitating the transfer of implicit knowledge to the robot without
extensive coding.

Programming excellence is a focal point for the team, emphasizing the im-
portance of clean code for reliability and adopting widely used techniques to
maintain code bases. This includes the incorporation of continuous integration
and SCRUM principles into their weekly routines. Careful hardware selection is
paramount, aiming for a symbiotic relationship where hardware choices inten-
tionally simplify software design. This approach not only streamlines develop-
ment but also enhances the adaptability and upgradability of robotic systems.

The team’s philosophy extends to promoting cooperation over competition
in robotics. They design robots to be cooperative partners with humans, empha-
sizing a seamless collaboration that amplifies the strengths of both parties. This
vision aligns with their broader goal of technology serving as a tool to enhance
human potential. By adhering to these principles, the team seeks to excel in
competitions while contributing to the advancement of robotics with solutions
that are innovative, reliable, and human-centric.
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Team Achievements, Participations and Collaborations: In this part,
we are going to highlight additional achievements and collaborations that un-
derscore the capabilities and collaborative spirit of our robotics lab at TU Delft.
These accomplishments not only showcase our commitment to excellence but
also reflect our dedication to advancing the field of robotics through hosting
innovative competitions.

— Continuous Demo at TU Delft Campus: Our team has successfully
conducted a continuous demonstration within a small mock supermarket at
the TU Delft campus over the past six months. This ongoing showcase, held
multiple times per week, is a testament to our team’s collaborative efforts in
fine-tuning our integrated mobile robot platform for real-world applications.

— Robothon Participation: Participating in the Robothon competition, our
team showcased a compliant robot teaching pipeline with a single 7-DOF
arm, emphasizing safety and efficiency. This collaborative effort highlighted
the interdisciplinary nature of our research, showcasing the expertise of our
team members.

— Incorporation of PhD Research: The collaborative efforts of our team
include the invaluable contributions of Ph.D. researchers within our lab.
Their work spans motion planning, decision-making algorithms, and various
other domains, enriching our mobile robot platform and positioning it as a
versatile and cutting-edge solution.

— Hosted AIRLab Stacking Challenge: In a unique endeavor, we hosted
the AIRLab Stacking Challenge—a robotics competition centered around
stacking items on a shelf using a robotic manipulator arm. The aim was to
simulate the process of restocking shelves. This challenge not only showcased
our team’s ability to organize and host events but also demonstrated our
commitment to advancing the field by providing a platform for participants
to engage with robotic manipulation tasks.

— Amazon Picking Challenge: The team is supervised by professors who
led the Delft team that won the 2016 Amazon Picking Challenge.

3 Approaches used in RoboCup@Home challenges

3.1 Social Navigation

To successfully integrate and accept mobile robots in human-centered spaces,
prioritizing social navigation is essential. This enhances efficiency and promotes
a socially intuitive interaction, considering norms and preferences. Emphasizing
the robot’s ability to navigate considerately fosters a positive user experience,
encouraging widespread acceptance and trust in daily use.

Our social navigation planner is based on the foundation of Model Predic-
tive Control (MPC). This choice of utilizing MPC as the underlying framework
for our social navigation system empowers the robot with the capability to dy-
namically plan and optimize its movements, taking into account not only the
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environmental constraints but also the intricacies of social interactions. By lever-
aging the predictive capabilities of MPC, the planner exhibits responsive motions
accounting for the predicted future behavior of the surrounding people, e.g. [2].
We specifically build on the MPC formulation for navigation among dynamic ob-
stacles presented in [3]. Furthermore, we perform free-space composition based
on the lidar data to derive linear constraints for static collision avoidance. The
cost function of the MPC can then be adapted to represent the desired social
behavior [4].

In the context of human-centered environments, successful navigation often
demands the ability to interact with specific obstacles. e.g. a laundry basket
which blocks the robot’s path. This concept is often termed as interactive nav-
igation. Unlike mere collision avoidance, interactive navigation entails a more
nuanced approach, allowing the robot to engage with obstacles strategically,
perhaps by repositioning, to achieve its navigational objectives effectively in set-
tings.

The interactive skill is developed based on the nonprehensile manipulation
capability of the mobile base, with the onboard arm serving as the "eyes" for
tracking and locating undesired obstacles. Nonprehensile manipulation, charac-
terized by not requiring precise grasping of objects, allows the robot to manipu-
late objects irrespective of their shape, size, or mass. Specifically, we employ the
mobile base to push the object out of its path. Through a thorough analysis of
contact conditions during pushing, we have devised a stable pushing approach
[5]. To enhance the flexibility of the pushing process, we leverage the physics
simulator, Isaac Gym, and employ the sampling-based control method, Model
Predictive Path Integral (MPPI), for motion planning during pushing maneu-
vers. This combination of capabilities enables the robot to navigate dynamically
through its environment by intelligently interacting with obstacles and adapting
its movements accordingly [6].

3.2 Safe manipulation

Our approach to trajectory generation is based on optimization fabrics [7]. This
geometric approach for trajectory generation encodes different behaviors, such as
collision avoidance or joint-limit avoidance into differential equations of second
order. Using operator from differential geometry, namely pull-back and push-
forward, it allows to combine behaviors from different task-manifold into one
smooth policy that converges to the goal state.

Our recent adaptation to dynamic environments [8] allows to deploy this
approach to human-shared environments. Optimization fabrics offer a versa-
tile framework for trajectory generation in changing environments, because it is
highly reactive (=~ 100Hz) and safe. Despite its advantages, optimization fabrics
suffer from the same problem as most other trajectory generation methods, such
as sampling-based planners: it is incredibly hard to program the logic for grasps
of products. Specifically, grasp must often be hand-composed of pre-grasp, grasp
and post-grasp poses. We address this shortcoming, by relying on human rea-
soning and understanding of the scene and the product to be grasped at hand.
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Following our philosophy, the human operator can actively teach the manipulator
to grasp a certain product (or a class of products) by dragging the robot through
the workspace. This approach, often referred to as learning-from-demonstration,
is the key for successful grasping in our approach and can seamlessly be inte-
grated with optimization fabrics.

To provide even more safety in human-shared environments, we use a compli-
ant low-level controller for tracking the desired velocity produced by optimization
fabrics. Our low-level controller is a simple PID controller in velocity space that
can be adapted online if a weight is attached to the end-effector. This choice is
well in line with our philosophy of favoring simple solutions of evolved methods
if possible.

We have opted for suction gripper as it has shown to be sufficient for all
the objects to be grasped so far. Our approach is, in principle, agnostic to the
gripper, so we might change the gripper used if needed.

3.3 Adaptive task assignment

The high-level decision making in our robot is also based on novel PhD re-
search [9]. The goal was to create flexible behavior without having to hard-code
all of the contingency plans for failed atomic actions. For example, when mov-
ing to grasp a supermarket product, the action could fail because the camera
might lose sight of the product, because someone moves the product, or because
someone manually stops the compliant arm from moving forward.

A regular approach to program robots to handle these contingencies is to
create a rich Behavior Tree (BT) [10] containing all fallback behaviors. Our
approach is also based on BTs, but we introduce a novel type of leaf node to
specify the desired state to be achieved rather than an action to execute. For
example, the BT describes that the robot should be "holding an object" but does
not specify the actions to achieve this state, because these change at runtime.
These actions are determined at runtime, as explained next.

The resulting BT from our approach is simple to program and it relies on
online planning through the (also novel) application of Active Inference [11,12].
Based on neuroscience, Active Inference is a Bayesian inference approach that
we use to essentially continuously calculate which of the viable atomic actions
has the highest probability of bringing the robot closer to the desired states.
This results in continual online planning and hierarchical deliberation. By doing
so, an agent can follow a predefined offline plan while still keeping the ability
to locally adapt and take autonomous decisions at runtime, respecting safety
constraints.

We have used our OPL robot to validate the hybrid Active Inference / Behav-
ior Tree approach [9]. The results showed improved runtime adaptability with a
fraction of the hand-coded nodes compared to classical BTs.
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3.4 Intelligent perception

Detection Central to our success is an advanced computer vision pipeline that
employs deep learning models for product and person detection. The product
detection camera, strategically located at the end effector, enables the robot to
efficiently identify and interact with grocery items on store shelves. Additionally
our attachable perception tower at the rear of the robot, with it’s 5 Realsense
depth cameras, enables us to detect the full poses of people surrounding the
robot, using Yolo based keypoint detection. Notably, our research in few-shot
learning allows us to seamlessly integrate new product classes with as few as five
images, ensuring adaptability and scalability.

Multi Object Tracking To ensure the precise association and tracking of
both products and individuals, we employ the cutting-edge multi-object tracker,
ByteTrack. In instances where products and individuals may not be visible for a
given number of frames, our custom combination of the Hungarian algorithm for
detection association and KalmanFilters becomes invaluable. This dynamic ap-
proach allows us to consistently keep track of the states of products and persons,
contributing to the robustness of our overall system.

Visual Servoing Our capacity to swiftly detect and track the 6 DoF pose of
products in the vicinity of the end effector, utilizing the relatively lightweight
Yolo, sets the stage for an innovative approach known as visual servoing. Un-
like the traditional sense-plan-act paradigm, this method involves performing
detection in a loop, allowing for the continuous updating of tracked states. This
real-time adaptation proves invaluable in mitigating noise and handling per-
ception disturbances when the robot is engaged in the intricate task of picking
items off the shelf. The implementation of visual servoing underscores our com-
mitment to dynamic, responsive, and efficient robotic interactions in contrast to
more conventional planning-based approaches.

3.5 Understanding the human instructions with the help of
ChatGPT

To enhance the transparency of our robot’s actions and decisions, we’ve seam-
lessly integrated ChatGPT alongside a text-to-speech model. Within our decision-
making framework, we leverage the Robot Operating System (ROS) to dis-
patch voice commands to a dedicated ChatGPT node. Employing a tailored
prompt, ChatGPT becomes a pivotal component in elucidating the robot’s ac-
tions through natural language. The final layer of this integration involves a ded-
icated speaker on the robot, ensuring that the output from the text-to-speech
model is not only generated but also audibly communicated, creating a more
comprehensive and user-friendly interaction.
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Robot Albert Hardware Description

Our custom robot is a mobile manipulator consisting of a mobile base (ClearPath
Boxer: https://clearpathrobotics.com/boxer/) and an advanced robotic arm
(Franka Emika Panda: https://franka.de/production) designed for diverse
applications. The specifications are as follows:

— Base: Clearpath Boxer Differential Drive with two actuated wheels and 2D
Lidar for SLAM

— Arms: Equipped with integrated force/torque sensors in all joints, the Panda
arm allow for compliant controllers ensuring safe and precise interactions
with the environment. It has a payload capacity of up to 3 kg,
making it suitable for various tasks.

— Customised vacuum gripper with two suction cups and on-board vacuum
pump

— RealSense D435 camera mounted on the end-effector

Robot’s Software Description

For our robot we are using the following software:

Platform: Ubuntu 20.04, ROS Noetic

— Localization/Navigation/Mapping: SLAM

Speech generation: Using ChatGPT for the explainability and speech gener-
ation.

— Object recognition: Using YOLO V6.3

People recognition: Using Keypoint based pose detection (YOLO V5)

— Arms control: Optimization fabrics

Simulation environment: Gazebo

External Devices

Albert robot relies on the following external hardware:

— Laptop with a 3070 TT GPU

Cloud Services

Albert connects the following cloud services:

— Text to speech and ChatGPT api.

Robot software and hardware specification sheet
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Fig. 1. Robot Albert

Robot software and hardware specification sheet
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