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Abstract. The Learning Autonomous Service Robots (LASR) team is
an emerging team, which participated in RoboCup@Home 2022 for the
first time. The team is part of a larger research group whose focus is on
using machine learning to improve the ability of robots to integrate with
the dynamic everyday environment, and the people that inhabit it. We
describe our research results and the capabilities of the robotic platform
for participation in RoboCup@Home.

1 Introduction

The LASR team was founded in 2019 as the Leeds (now Learning) Autonomous
Service Robot team, and has since participated in three competitions of the
European Robotics League (ERL), namely, two Sciroc Challenges1 (2019 and
hybrid 2021), and the Smart Cities Challenge2 (2023); a virtual RoboCup@Home
(2021) and RoboCup@Home 2022 in Thailand. We achieved first place in the
Coffee Shop episode in 2019. During the pandemic, we ranked 5th out of 10 in
the virtual RoboCup@Home, and achieved third place in the remote (stremed
from our lab) pick-and-place manipulation Sciroc Challenge. After the pandemic,
like most teams, we had to reboot. We took part in RoboCup@Home 2022, our
first in-person RoboCup, and restored a fully working team for the ERL Smart
Cities Challenge 2023, where we achieved first place in both the Coffee Shop and
the Elevator task, in addition to the award for best team overall, shared with
B-it-bots.

The team also runs a robot club society at King’s College London, where
any students interested in robotics can come, learn, and participate. We use
our current research goals and competitions to provide direction and output-
focused projects to help drive engagement and relevance. The team is therefore
both an education and research platform, which several of the previous members
have described as the highlight of their university experience. We currently have
members at all levels: undergraduate, master’s, and PhD students.

1 https://sciroc.org/challenge-description-2019/
2 https://eu-robotics.net/erl-smart-city-competition-in-2023/
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2 Research

The group’s research is centred on adaptation for decision-making in autonomous
agents, with robots as one of the natural applications. Some of the research lines
have an immediate use in RoboCup, while others are more oriented towards the
future of service robots. This is particularly the case for online learning, which
has not been part of the competition yet, but we consider nonetheless central to
the field.

In this section, we will first briefly describe the research on planning and
learning that we believe will have a future role in autonomous robots. Then, we
will present our research on robot manipulation and human-robot interaction,
which tackles more directly some of the challenges of the last RoboCup@Home.

We expect future robots to be versatile, being able to solve a variety of tasks
in an environment also inhabited by humans. Of the three main techniques to
define an agent’s behaviour—programming, planning, and learning— program-
ming (often in the form of state machines) is by far the most popular, but also
the least prone to versatility. Our research is aimed at transitioning from state-
machine representations towards a combination of planning and learning over
the upcoming years, largely based on the results described in the next section.

2.1 Adaptation in Planning

Reinforcement Learning (RL) agents learn behaviours through exploration, that
is, trying new actions and evaluating their long-term effects. Exploration is nec-
essary for learning but also difficult to harness in robotics, since costs in terms
of time, energy and wear and tear can be prohibitive. This phenomenon has
almost entirely relegated robot learning to simulations. With the goal of making
online learning practical for real robots, we study how planning and learning can
complement each other.

Reasoning over models allows the agent to strongly limit the exploration to
actions that lead towards the goal. Since “all models are wrong, but some are
useful”, the interaction of planning and learning can meaningfully drive explo-
ration greatly reducing the sample complexity of RL agents, while the adaptation
provided by model-free RL allows to overcome the inevitable inaccuracies of the
models. We developed methods to make use of action languages while learning
action costs from the real world [16], or that integrate with Answer Set Pro-
gramming [18] to constrain the exploration to safe and explainable behaviours,
while adapting to the unmodeled aspects of the environments.

Planning is a notoriously computationally hard problem in general, but effec-
tive heuristics can make planning feasible in a number of scenarios of practical
interest. We developed learned heuristics from meta-reinforcement learning, so
that previously solved tasks can inform the search on new related tasks [13,14].
We also developed a method to reduce, over time, the planning horizon, so that
the agent behaviour gradually transitions from model-based to model-free [10].
Beyond being hard to compute, executing plans is also a difficult task due to the
high uncertainty that robotics domains present. We studied monitoring users
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to preventively replan when errors may occur [15] and also considered how to
model planning problems better to prevent artificial dead-ends [4].

At King’s College London, there is a long tradition on task planning applied
to robotics, with contributions such as the ROSPlan framework [9]. ROSPlan
has been actively in development since then, with upgrades that greatly simplify
the use of different planners as well as their integration with robot sensors [7],
and providing tools to implement low-level action execution with intermediate
state machines [3].

2.2 Adaptation in Human-Robot Interaction

We recently started a new research line in adaptation to users with different
abilities. We consider fully collaborative tasks, in which a robot and a person
share a common goal. In defining robot actions, the designer further defines
whether the action depends on human capabilities. For instance, a robot may
be able to move at different speeds, with the action move_fast depending on
the human collaborator to be able to walk_fast. For any new collaborator, the
robot cannot know, beforehand, what capabilities they have. However, it starts
from a prior, and through reinforcement learning and interaction, it estimates
the capability level of the collaborator. If the robot collects sufficient evidence
that the person does not have an ability necessary for a given action, the robot
adapts by disabling the corresponding action and finding a new way to carry
out the task. The robot can, therefore, tailor its level of support from minimal,
for fully-abled people, to carrying out most of the task when assisting a disabled
person. We demonstrate the adaptation on several tasks, including a real-world
experiment using our TIAGo robot [23].

We also carry out research in assistive robotics and robot adaptation to
preferences [8,6], as well as efforts towards explainability of the robot’s motions
and behaviour [5,25].

2.3 Learning for Manipulation

We tackled two manipulation problems for which efficient planners are not
available: manipulation in clutter, and with deformable objects. Most consol-
idated manipulation strategies for rigid objects compute collision-free trajecto-
ries, which cannot be used in clutter. Positioning and retrieving objects from
shelves are examples of manipulation often involving clutter, also recognized at
RoboCup@Home. Considering the interaction with other objects makes the tra-
jectory planning problem significantly more complex, especially if, in addition to
grasping, other physics-based actions (such as pushing and sliding) are taken into
account, whose effects are difficult or expensive to predict accurately. We devel-
oped a learning-based Receding Horizon Planner, which tackles two challenges:
the computational complexity of the problem when considering interactions be-
tween all objects, and the inaccuracy of models, whose predictions accumulate
errors and become invalid after a small number of actions. We used a learned
value function in simulation as a heuristic for planning, both influencing action
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probabilities during rollouts and providing a cost-to-go estimate for states at the
end of the short-horizon plan. The short horizon enables quick reaction times.
Rather than planning for each problem as if that was the first one ever encoun-
tered, experience is accumulated in the value function so that previously solved
problems provide a heuristic for the new ones. The system has been extended
[1] to retrieve objects in the more realistic scenario of partial observability, with
the robot looking at the shelf from the side, and also demonstrated on a real
robot [2].

Recently, we developed a planning algorithm to simplify the actions when
planning for deformable objects, such as for cloth folding [26]. We expect de-
formable object manipulation to play an increasing role in RoboCup@Home,
given the natural application in the home setting.

2.4 Curriculum Learning

Knowledge transfer between related tasks is another approach to agent versatil-
ity, increasing the range of capabilities of the autonomous system, while learning
new tasks increasingly faster. Curriculum learning consists in learning through
tasks of growing complexity, towards one or more final tasks, so that learning
is either faster, or results in a better learned behaviour than from scratch. The
automatic generation of curricula involves a number of interesting challenges: in
the definition of tasks at the appropriate level of difficulty for the agent, in the
knowledge transfer methods that allow the agent to take advantage of previous
tasks, and in the sequencing of tasks once they have been generated. Nonethe-
less, curriculum learning is widespread in any level of human learning, from
motor control to higher education, and there is no doubt that the order in which
we learn matters. Our team, with collaborators, contributed to the problem of
optimal curriculum generation: a set of strategies to create intermediate tasks
for artificial agents [19], a method to estimate the transfer potential between
tasks [22], the first algorithm to generate curricula that require no learning in the
process [24], a formalization of the problem in the framework of combinatorial
optimization [12], and an algorithm for task sequencing in critical, real-world
problems [11]. The field has grown significantly under the pressure that deep
learning has put on sample complexity, to the point that most deep learning
applications employ some form of curriculum, often implicitly defined by hand.

3 System Architecture and Capabilities

The research group owns a TIAGo Steel robot from PAL Robotics3, as seen in
the addendum. The robot has a mobile base with a differential drive mechanism,
battery pack, laser range finder, rear sonar sensors and an onboard computer.
The torso has a lifting mechanism, houses the onboard microphone array and
supports a 7 degree of freedom (DOF) arm with gripper and a 2 DOF head. The
head houses an RGB camera and depth sensor setup.
3 http://pal-robotics.com/

http://pal-robotics.com/
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The TIAGo robot comes with the ROS middleware on top of which PAL has
developed their own proprietary middleware. We have then integrated our own
software either directly through ROS, or through PAL’s middleware layer.

3.1 Current Capabilities

Some of the currently implemented capabilities are described below, and in most
cases can be found within our GitHub Organisation4, available to the public and
in particular to the RoboCup@Home community.

Task Architectures Many of the below capabilities are implemented as stan-
dalone ROS packages, which are intended to be robot-agnostic. Cohesive uses
of these capabilities are implemented through robot skills, which are individual
States or small Finite State Machines (FSMs), which can be easily dropped into
larger Hierarchical Finite State Machines (HFSMs), due to their well-defined
interfaces. As is often the case, when solving complex tasks, such as those at
RoboCup, we tend to develop by hand a HFSM. In the future, we plan to enable
the robot to perform its own reasoning about how best to solve the task at hand
by utilising its aforementioned robot skills.

Geometric Navigation Any robot operating in the real world will need to
be able to navigate autonomously, quickly adapting to and localizing within
a dynamic environment. It will also need to be able to detect obstacles and
understand its own infrastructure to be able to navigate successfully. We make
use of the ROS package move_base with proprietary PAL planners for both
global and local planning.

Social Navigation It is often the case that robots navigating in the wild look
unnatural or break social conventions, especially in situations where crowded
spaces are involved, such as waiting for and subsequently riding an elevator.
We developed two key approaches to deal with these problems, mainly focusing
on how the robot should statically position itself. To contribute to decision-
making about acceptable waiting positions outside of elevators, we constructed a
dataset of laser readings represented as 2D images collected whilst the robot was
waiting for the elavator, and finetuned a Keypoint RCNN model5. The navigation
planner was used to filter out positions that couldn’t be reached. For positioning
the robot whilst riding the elevator, we use heightmaps - an approach borrowed
from terrain representations. We use laser readings to construct a heightmap
and select the least busy position, again using the navigation planner to filter
infeasible positions.

4 https://github.com/LASR-at-Home/
5 https://pytorch.org/vision/main/models/keypoint_rcnn.html

https://github.com/LASR-at-Home/
https://pytorch.org/vision/main/models/keypoint_rcnn.html
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Object Detection and Recognition Object detection has been a hot topic
in computer vision for many years, with many competing solutions vying for the
top spot. After testing a number of implementations we have settled on the pop-
ular YOLO framework [21] for object detection. In addition to YOLO, we had
previously fine-tuned a pretrained Mask R-CNN model on the YCB6 dataset
for object detection and 3D object segmentation. However, more recent versions
of YOLO, namely YOLOv8, perform both object detection and 2D segmenta-
tion - which through further computation on the PointCloud, we scale to 3D.
Whilst pretrained weights for YOLO exist that are trained on large datasets,
encompassing many classes, such as COCO7, often there is a need to detect spe-
cific object classes that are less general. Thus, we developed our own training
pipeline8. We begin by collecting 2D images from the robot’s camera of tar-
get objects at varying (but not exhaustive) rotations about each axis, through
the use of a turntable with a uniform background. We segment the objects using
SegmentAnything [17] to generate masks and generate a synthetic dataset by su-
perimposing these masks onto random and realistic backgrounds. Our pipeline
only takes as input the 2D images, generates the synthetic dataset, and trains
a model using it (bootstrapping from pretrained weights), without the need for
manual intervention. However, we found it quite useful to supplement our syn-
thetic dataset with manually labelled, in-context images of the objects, again
collected through the robot’s camera.

Person Detection and Recognition The pretrained weights available to
YOLO incorporate both objects and people. We have taken a slightly different
approach where we train separate networks for objects and for people, and then
contextually select which model to apply at runtime. However, more recently
we implemented a ROS wrapper for BodyPix 2.0, which is specifically aimed at
person detection, segmentation and joint-pose estimation. We apply the same
method as we do to objects to produce 3D detections. For re-identifying peo-
ple, we use a fairly simple solution. We maintain a database of images for each
individual, and given a target image (cropped to only contain a single person)
we perform a simple lookup in our database, using DeepFace for comparison.
DeepFace verifies a match by evaluating a distance metric in facial-embedding
space.

Person Pose Estimation Person pose estimation is a general problem in com-
puter vision to deduce a person’s behaviour from the position and orientation of
their body. Previously, we used OpenPose to estimate people’s poses - we have
utilised it to recognise gestures, such as waving, alongside determining whether
people are standing or sitting, and inferring what object someone is pointing at.
As described above, we are now using BodyPix 2.0 for estimating people’s poses,
but the same methods for deducing behaviour apply.
6 https://www.ycbbenchmarks.com/
7 https://cocodataset.org/
8 https://github.com/insertish/yolov8-auto-trainer

https://www.ycbbenchmarks.com/
https://cocodataset.org/
https://github.com/insertish/yolov8-auto-trainer
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Object Manipulation We use the MoveIt! motion planning framework for ob-
ject manipulation. It integrates 3D sensors with the Octomap, which implements
3D occupancy grid mapping to model arbitrary environments. This allows our
robot to execute planning motions free of collisions to grasp the target object. In
Robocup 2021, we used Grasp Pose Detection (GPD) to generate 6-DoF grasps
that were executed by MoveIt. GPD generalizes well to unknown models because
it takes in a pointcloud of an object and produces viable grasps. In SciRoc 2021,
we used MoveIt to execute geometrically inferred grasps. More recently, we used
Contact Graspnet, which specialises in grasp pose generation in cluttered scenes,
and similarly to GPD just takes an input pointcloud.

Social Interaction Dialogue is a natural medium for humans to interface with
robots. Previously, we used Google’s Dialogflow cloud platform for transcribing
audio and reasoning about the intents and entities present in the text - how-
ever, this requires an internet connection due to its cloud-based nature, which
is not always available. Thus, we now utilise Whisper [20] for transcribing audio
into text and then various context-dependent natural language understanding
(NLU) models trained with Rasa for intent recognition and entity extraction.
Our speech processing pipeline thus performs end-to-end audio to intent recog-
nition and entity extraction. Communication through dialogue is not always
possible, particularly when the human cannot speak. Thus, we have also imple-
mented methods of communicating with our robot through various interfaces
implemented on the tablet which is mounted on our robot’s head.

4 Conclusion

We introduced the research and current capability of the LASR team. We believe
that our research in adaptive decision making and reinforcement learning in the
real world will bring a new perspective to the competition, strongly contributing
to the development of service robotics for the home.
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PAL Robotics TIAGo Steel Hardware Description [OPL]

Fig. 1. PAL Robotics
TIAGo Steel robot

PAL Robotics TIAGo is a customisable robot used com-
mercially and for research. We have the Steel version of
the robot with an additional Windows tablet. The spec-
ifications are as follows:

– Base: differential drive base, 1m/s max speed.

– Torso: lifting, stroke 35cm.

– Arm: 7 DOF with gripper.

– Head: 2 DOF with sensors.

– Dimensions: height: 110 - 145cm, base footprint:
54cm diameter

– Weight: 72kg.

Our robot incorporates the following devices:

– External laptop with graphics card

– Touch screen Windows tablet (head mounted)

– External microphone array (potential)

– Nvidia Jetson TX2 (potential)

– Raspberry Pi 5 (potential)

Robot software and hardware specification sheet
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Robot’s Software Description

OS: Ubuntu 20.04
http://releases.ubuntu.com/20.04/

Middleware: ROS Noetic + PAL
http://wiki.ros.org/noetic

Simulation: Gazebo
http://gazebosim.org/

Visualisation: RViz
http://wiki.ros.org/rviz

Navigation: move_base & pal_planner
http://wiki.ros.org/move_base

Manipulation:

MoveIt!
https://moveit.ros.org/
GPD
https://github.com/atenpas/gpd
Contact Graspnet
https://github.com/NVlabs/contact_graspnet

Depth Analysis: PCL
http://pointclouds.org/

Speech Analysis:

Dialogflow
https://dialogflow.com/
Whisper
https://github.com/openai/whisper
Rasa
https://rasa.com/

Object & Person Recognition:

YOLO
https://pjreddie.com/darknet/yolo/
YOLOv8
https://github.com/ultralytics/ultralytics
SegmentAnything
https://github.com/facebookresearch/segment-anything
BodyPix 2.0
https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation
https://github.com/de-code/python-tf-bodypix

Facial Recognition: DeepFace
https://github.com/serengil/deepface

Complex Robot Planning:
SMACH
http://wiki.ros.org/smach
actionlib
http://wiki.ros.org/actionlib

Pose Estimation

OpenPose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
BodyPix 2.0
https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation
https://github.com/de-code/python-tf-bodypix

Robot software and hardware specification sheet
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