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Abstract. LCASTOR is the team from the Lincoln Centre for Au-
tonomous Systems (LCAS) at the University of Lincoln, United King-
dom. It comprises academics, researchers and postgraduate students that
have developed several solutions for the deployment of social robots
in public environments. The main research objectives are focused on
the integration between Deep Learning and Human-Robot Interaction
(HRI) and, in particular, on robot learning, long-term autonomy, and
HRI with untrained users. Our main motivations to participate in the
RoboCup@Home Open Platform are 1) the adaptation of the solution
developed by the research group in National and European projects to
the RoboCup@Home tasks, and the dissemination and release of these
solutions to the RoboCup@Home community, 2) starting a new robotics
competition task force within LCAS to foster the involvement of under-
graduate and postgraduate students in the field.

1 Introduction

LCASTOR (LCAS Team fOr RoboCup) team was formed in 2023 at the Lincoln
Centre for Autonomous Systems (LCAS) for participation in RoboCup@HOME
OPL competitions. The team was born building from the experience of the LCAS
group in participating in past RoboCup@HOME SSPL competitions with the
SPQReL team1. The main research objective of the team is to foster further
collaboration between postgraduate students and academics for developing ef-
fective solutions for social and service robots in public spaces. LCAS gained a
lot of experience in this field with the participation in several projects related
to this topic. In particular, the recent projects STRANDs2, Lindsey3 and TAR-
ICS4 have developed components for social robots in public environments. The
main goals of the team are: i) integrate the individual outcomes of the involved
projects into a more functional and robust social robot, ii) adopt these solutions
for the RoboCup@Home environment (i.e., to solve specific tasks), iii) release

⋆ Supported by School of Computer Science, University of Lincoln, UK.
1 https://sites.google.com/dis.uniroma1.it/spqrel
2 http://strands.acin.tuwien.ac.at/
3 https://lcas.lincoln.ac.uk/wp/projects/lindsey-a-robot-tour-guide/
4 https://tas.ac.uk/research-projects-2022-23/tarics/
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and disseminate outcomes stemming from this initiative and the projects in-
volved readily to the RoboCup@Home community, iv) establish a new robotic
competition task force within our University to attract more students and foster
collaboration between students and academics.

2 Scientific Contributions

In this section, we discuss the main recent scientific contributions achieved by
our research groups and the research topics relevant to the RoboCup@Home
competitions in general.

2.1 General objectives

Planning and plan execution. The deployment of robots in populated environ-
ments interacting with non-expert users requires facing many sources of uncer-
tainty during task execution such as incomplete information about the envi-
ronment or unpredictable behaviours coming from humans. Planning and plan
execution under such uncertainties is also an important problem to be addressed
within the RoboCup@Home competition and, in this context, we have recent
research results.

In [14], we propose Next-Best-Sense (NBS), a decision-making framework
that allows a mobile robot to explore an environment looking for objects while
combining multiple criteria in a single utility function. Modelled following the
traditional sense-plan-act paradigm, NBS iteratively select a new robot pose in
order to efficiently explore an environment while carrying out a survey task. We
further extend NBS in [13], where we propose a topological formulation of a
particle filter for tracking multiple fruit harvesters in a polytunnel scenario, by
integrating 2D LiDARs, RFID, and GPS readings.

Human-Robot Interaction. Social robots that are deployed in human-inhabited
environments, like homes or public spaces, need to be able to perceive humans
and plan behaviours that take into account their external and internal states. In
this aspect, we are interested in improving the state of the art in user estimation
and robot behavioural adaptation.

The long-term deployment, with a duration of more than three years to date,
of a social robot in a public museum with the “Lindsey: the tour guide robot”
project [2] has allowed us to study how people engage with robot technologies
in such spaces and to consolidate our HRI technological developments. In [6],
we present a fully integrated people perception framework, designed to run in
real-time on a mobile robot. This framework employs detectors based on laser
and RGB-D data and a tracking approach able to fuse multiple detectors using
different versions of data association and Kalman filtering. To detect the users’
engagement state during the interactions, we developed a learned regression
model that can detect the users’ group engagement level in real-time and from
the robot’s own camera [3]. Social robots also need to adapt what they do and
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say during interactions based on the detected users’ state, for this reason, we
designed a learning framework that adapts online, during the interactions, the
robot behaviour to maximise the expected users’ engagement [5,4].

The outcomes from the MeSAPro5 project bring to the table additional fea-
tures to our system which allow a simple bilateral Human-Robot Communication
(HRC). The MeSAPro project developed a human-aware navigation framework
that incorporates non-verbal communication based on body gesture recognition
to communicate implicitly with the robot while using voice messages and vi-
sual alerts to let the human be aware of the robot’s intentions [9]. This HRC
was designed and evaluated for robot-assisted fruit harvesting operations but
the gesture recognition approach based on the OpenPose is easily translated to
the social robotics domain. Moreover, in [1] a causal framework has been ex-
ploited for modeling and predicting human spatial interactions in social robotics
contexts.

Long-term autonomy. One of the main goals of the RoboCup@Home is to de-
velop a system able to robustly navigate in dynamic environments subject to
changes and unpredictable situations. In this context, [11] presented a local-
ization and mapping system based on a spatiotemporal occupancy grid that
explicitly represents the persistence and periodicity of the individual cells and
can predict the probability of their occupancy in the future. The proposed repre-
sentation improves the localisation accuracy and the efficiency of path planning.
In [8], we present an approach for the topological navigation of service robots in
dynamic indoor environments this approach uses a topological representation of
the environment that simplifies the definition of navigation actions and is aug-
mented with a spatiotemporal model that specifically represents changes that
stem from events in the environment, which impact on the success probability
of planned actions which allows the robot to predict action outcomes and to
devise better navigation plans. In [10], we have also shown how better HRI can
be facilitated by exploiting long-term spatiotemporal experience, similar to the
approach above, but directly linking long-term autonomy with setting goals for
a mobile robot. In populated environments, the ability to be able to predict the
directions people are heading is useful for robots to plan suitable paths. The
machine learning method in [15] allows us to learn a model for such predictions
from long-term experience.

3 System Architecture and Implementation

The framework implemented for competing in @HOME competitions combines
different home-made and third-party solutions for enabling different capabilities
with the TIAGo robot. Figure 1 outlines the framework by showcasing the most
important software components and how they communicate with sensors, ac-
tuators and with each other. The Annex section at the end of this document,

5 https://www.york.ac.uk/assuring-autonomy/demonstrators/

robots-to-support-farming/
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Fig. 1. Logical overview of the system architecture used to solve the competition tasks.
The components developed by the LCASTOR team are highlighted in bold.

provides a comprehensive list of the publicly available repositories developed by
us and a list of the third-party software.

3.1 Human Perception

For enabling social perceptual abilities, we need to make sure that the robot is
able to perceive the humans in the environment, track their position over time,
their pose and estimate their social state.

Bayes Tracker Filter. We developed an algorithm that is able to fuse the human
detection from heterogeneous data (for example, the users leg detection or their
upper-body detection) and provide a unique and consistent representation of
them over time. By integrating multiple observations, the algorithm can associate
them to specific user identities over time.

Engagement Detection. In order to give TIAGo the ability to understand whether
the users are paying attention to the robot whilst it is speaking or performing
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a task, we have developed an engagement detector. The model, implemented in
with the Keras6 library, takes a temporal window of RGB camera images and
provides a real-time assessment of the engagement level of the users in front of
it. This information is fed into the robot plans so that it can perform contingent
actions to recover the engagement of people or repeat the task when their are
paying attention.

Gesture Recognition. Since non-verbal communication methods are useful in
scenarios where people might have speech disorders, we implemented a gesture
recognition methodology that allows TIAGo to interpret the user’s body ges-
tures as commands to perform different actions. The gesture recognition starts
by extracting human body skeleton joints from RGB images using OpenPose7.
Then, we construct a feature vector conformed by relative distances from each
skeleton joint to the neck joint and the angles between consecutive joints. We
normalize the feature vector and remove information from joints that are not
crucial. We only use the upper body joints from the BODY 25 skeleton model
which are transformed into a total of 28 features. Those features are used as
inputs to a Random Forest classifier which was trained to classify 11 different
body gestures These body gestures are then interpreted by TIAGo as commands
to react in different ways.

People Identification. People identification is done with a encoder model, which
produces a vector in the latent space at the output of the model. This model
is an open-source implementation of Deepface 8. Pretrained weights were used
in the model. In the implementation, there are two phases namely learning and
inference. The learning phase is done to record vector of any new face, and in
the inference phase all recorded vectors are compared with new vector produced
by the model to identify a person in front of the robot.

3.2 Navigation

The Topological Navigation module, is a high-level navigation framework that
allows defining points-of-interest, also called nodes, on the metric map of an
environment to enable robust navigation. Nodes in the topology are connected
by edges which represent the actions that the robot can take to go from one node
to the other. The framework is agnostic to the low-level navigation action used,
however, in our competition’s implementations we use the move base software.
Topological navigation enables tagging, with one or multiple tags, the various
nodes defined in the environment to reflect location names or their properties.
For example, for the competition tasks, we use tags to individuate locations in
different rooms of a house and to indicate which robot actions are appropriate to
be executed in specific locations. The topology and the node’s tags are updated

6 https://keras.io/
7 https://github.com/CMU-Perceptual-Computing-Lab/openpose
8 https://github.com/serengil/deepface
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in real-time during execution by the robot based on the observations it takes in
the environment.

In order to achieve a robust obstacle avoidance performance and safely plan
a path among the people and the objects in the arena, we integrate observation
coming from the 2d LiDAR mounted in the base of TIAGo together with the
point clouds acquired from the 3d LiDAR located above the head of our robot
and the one coming from the RGBD cameras located in the eyes. These three
sensor data are integrated and mapped in the local cost map built around the
robot footprint which is constantly updated to reflect the dynamic nature of
the world in which the robot is moving. This solution proved to be efficient at
identifying and avoiding even small obstacles located on the floor, such as soft
drink cans.

3.3 Failure Notification and Recovery

The sentor package is a monitoring node that monitors the overall state of the
ROS system of TIAGo. The package allows to define rules which represent the
“normal”, or “abnormal”, state of other ROS nodes based on topic messages
observations and to attach recovery procedures to any of implemented rule.
Any time that a monitored situation happens,sentor will initiate the recovery
procedure to return to a working state. This package enables us to handle ex-
ceptions and unexpected situations during the competition tasks execution to
avoid stalling conditions.

3.4 Behavioural Planning

The execution of the robot behaviours is managed using the Petri Net Plans
formalism, which allows to define conditional plans for the robot execution. The
formalism was originally defined and implemented in [16], but extended by the
LCASTOR team for easing the definition hierarchical plan by enabling a more
practical reuse of plans as sub-plans, in the same way actions can be executed.

3.5 Speech and Dialogues

The robot’s capability to understand voice commands is possible by using Whis-
per9 as a speech-to-text converter. To mitigate the negative impact of noisy
environments, an external microphone with an array of microphones that can
be enabled/disabled is used. Only microphones pointing towards the front of the
robot are enabled during human-robot interactions. Once the speech is captured,
the intention recognition and entity name extraction are done by a Rasa-based
chatbot model10. The Rasa model is trained to recognize specific intentions based
on given sentence examples. If more than one entity name is required to be ex-
tracted from the speech, the rasa model is able to automatically generate a
questionnaire that collects all the inquiries before sending them to the ROS
planner for further action.

9 https://openai.com/research/whisper
10 https://rasa.com/
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3.6 Object Perception

The perception, manipulation and general handling of objects are all tightly
coupled together in our implementation. As input data for all this we use RGB-
D data from an Azure Kinect camera [12], which provides high quality sensor
outputs which are resistant to external disturbances due to the nature of the
time-of-flight sensor used to acquire the depth images and the generally robust
RGB sensor. We then feed these input data into an implementation of Grasp-
Net [7] to simultaneously produce segmentation masks of the objects of interest,
their full 6D-poses as well as high-confidence estimates of the ideal grasp pose
for each object. All these annotations are handled by an Object Manager, which
stores them and communicates them via custom ROS messages to other nodes
requiring information about the location, pose or “graspability” of the objects
of interest whenever the robot needs to interact with them.

To accommodate the increased computational demand required to run the
implementation of GraspNet, we also have a more lightweight implementation
of a simple Mask-RCNN running on standby, trained on the same object set as
the GraspNet, which can be run as a more efficient substitute when grasping
poses are not currently required. This setup allows for a much more efficient
object perception framework, which delivers exactly what we require it to when
we require it to, without unnecessarily wasting computational resources during
downtimes.

4 Conclusions and Future Work

In this document, we have described the main scientific interests of the LCAS-
TOR team members and the technical contribution that have been developed so
far for participating in RoboCup@HOME competitions.

With the experience from the 2023 Competition, we plan to improve our
framework making it more robust that can solve most @HOME tasks integrating
navigation, vision, manipulation, speech and planning capabilities.

Participating in this year’s competition will give us the possibility to show-
case our current strengths and establish our team further for future local and
international competitions.
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Annex

Robot Hardware

The robotics platform used by the LCASTOR team for competing in the RoboCup@HOME
OSPL competitions is a commercially available TIAGo robot developed by PAL
Robotics11. The TIAGo configuration is shown in Figure 2.

External Computing Devices

Additionally, the computational requirements for executing the competition tasks
are supported by an external Dell G17 laptop, which sits on the robot’s laptop
tray. The laptop is equipped with an intel i7 CPU and a NVIDIA GeForce RTX
2060 GPU. A Velodyne LIDAR is mounted on top of the robot with a metallic
frame for holding the LIDAR above the robot.

Software Packages

The overall description of the software architecture in use for the competition
is described in Section 3. The software components developed in-house by the
L-CAS members of the team are:

– Topological navigation: https://github.com/LCAS/topological_navigation/
– Bayes Tracker Filter: https://github.com/strands-project/strands_

perception_people

– Engagement detection: https://github.com/LCAS/engagement_detector
– Gesture Recognition: https://github.com/LeonardoGuevara/mesapro
– Decision making and planning: https://github.com/LCAS/nbs
– Behaviour specification and planning: https://github.com/francescodelduchetto/

PetriNetPlans

– Door opening: https://github.com/JakeSwin/Door-Handle-Detector-Ros
– Failure notification and recovery: https://github.com/LCAS/sentor

The followings are the third-party software that we deploy on the robot:

– OS. Ubuntu 20.04
– Middleware. ROS noetic
– Simulation. Gazebo
– Metric navigation. move base
– Object detection. YOLOv3
– OCR: Keras-OCR
– Human pose detection: OpenPose
– Manipulation and grasping. MoveIt!
– Dialogue management. Rasa
– Speech recognition. OpenAi Whisper

11 https://pal-robotics.com/robots/tiago/
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Fig. 2. The PAL Robotics TIAGo robot used by the LCASTOR team.
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