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Abstract. A service robot is a robot that can assist humans to perform
common daily tasks in shared environment, such as houses, offices or
hospitals. With this in mind, the final goal of a service robot must be
making human life easier and more comfortable. Also, a robot can be
an excellent companion, for example, for elderly or lonely people, mak-
ing their life better and happier. To achieve this, a service robot must
be capable of understanding spoken and visual commands in a natu-
ral way from humans, navigate in known and unknown environments
while avoiding static and dynamic obstacles, recognize and manipulat-
ing objects, detect and identify people, among several other tasks that
a person might request. This paper describes our current research topics
and main findings as well as the efforts to implement all the developed
software into our open platform Justina.. We have improved the abilities
of robots with various techniques that have been applied to other robot
and social IT systems. We briefly introduce them and our latest related
research in this description paper.

1 Team Summary

Following our current collaboration, this year we are participating with the ser-
vice robot Justina, developed at the Biorobotics Laboratory, where we are in-
tegrating the joint efforts of team eR@sers (Japan) and Pumas (Mexico). Both
research groups have a long history participating in RoboCup@home and a re-
cent history in the @home DSPL league.

Team eR@sers was formed around 2000 to participate in RoboCup 4 legged
league. Thereafter, the team joined the @home leage where eR@sers achieved
a first place at RoboCup 2008, 2010, second place in RoboCup 2009, 2012,
2017, and third place in RoboCup 2018, and its social robot HSR obtained
the @Home Innovation Award in 2016. Furthermore, Team eR@sers was finalist
in World Robot Summit(WRS) 2018. On the other hand, Team Pumas DSPL
has participated in national and international competitions since 2006. In the
Robocup 2018, the team obtained the second place in the categoty DSPL@QHome
with the robot ”Takeshi” and was finalist in WRS 2018, while in the RoboCup
2019 the team got the fourth place in DSPL and second in OPL.

As a joint research group, we have participated in RoboCup 2021 and RoboCup
2022 — in the latter, we ranked 4th place and got the “Smoothest, Safest Navi-
gation” Award.
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We mainly focus on the adaptability to the environmental changes and on
the integration between the sensory-motor data and symbolic representation,
utilizing only the neuro-dynamical model. All developed functions can be packed
in ROS modules and almost all training data comes from real sources; the system
has been tested in real environments.

2 Innovative technology and scientific contribution

2.1 The VIrtual and Real roBOt sysTem (VIRBOT) [1] [2]

To deal with the challenges that a service robot has to perform, we propose VIR-
BOT, a robot architecture that combines traditional, reactive, and probabilistic
techniques. In VIRBOT, the operation of a service robot is divided into four
general layers: Input, Planning, Knowledge Management, and Execution, where
each of them has several subsystems.

VIRBOT has a combination of basic artificial intelligence (AI) techniques,
specifically the ones used in Natural Language Understanding (NLU), with de-
vices and technology recently developed. By combining symbolic Al with digital
signal processing techniques, a good performance in a service robot has been
obtained. NLU is used in a service robot to interpret spoken language and then
execute a task, where one of the main problems using NLU is determining the
meaning representation. Once the application is defined, we have a framework
that establishes the robot semantics, defined as a series of instructions that allow
a robot to perform relevant operations.

In this section, we will describe most relevant VIRBOT modules categorized
by layer.

Input Layer This layer encloses the robot’s internal and external sensors, real
or simulated, in a series of modules, as follows.

Human-Robot Interface: This module is responsible of recognizing and
processing voice and gesture commands. Speech is processed here in the NLU
module.

Symbolic Representation and Interpretation: Here, digital signal pro-
cessing techniques are applied to the data provided by the internal and external
sensors to obtain a symbolic representation of the environment.

Perception (Hypothesis Generation): This module generates a set of
beliefs about the possible states of the environment. Beliefs are based on the
symbolic representation of the sensorial information coming from internal and
external sensors, as well as the processed user input from the Human-Robot
Interface module. Such beliefs are validated later on to either trigger actions or
update the robot’s world model.

Planning Layer This layer is responsible of generating plans at a high level of
abstraction and performing global reasoning. Beliefs generated by the perception
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module are validated in this module with information of the Knowledge Manage-
ment layer. Once validated or recognized, a belief is considered knowledge and
either stored or used to trigger the Action Planner, which will generate a plan of
action or sequence of physical operations to achieve the desired goals. However,
if something unexpected happens while executing a plan, the Goal Activator will
be notified, interrupting the Action Planner and triggering the generation of a
new plan.

Knowledge Management Layer This layer involves all modules that store
and provide access to the robot’s knowledge. Such knowledge, which may not be
symbolic, ranges from raw and probabilistic maps, to semantic knowledge of the
language. For high-level reasoning, a rule-based system is used. The facts and
rules are written in CLIPS [3], a language developed by NASA, and represent
the robot’s knowledge while encoding knowledge of an expert.

Execution Layer This layer is responsible of executing generated plans and
making local decisions. At its core, the Bank of Procedures encapsulates a set
of hardwired functions the Action Planner combines to assemble more complex
plans. These functions implement state machines to partially solve very spe-
cific problems, including robot motion and object manipulation. Such functions
rely on low level Behavior Methods, a set of reactive algorithms to solve local,
unforeseen situations like obstacle avoidance.

2.2 Multimodal feedback for active perception

We use a multimodal system for active robot-object interaction using laser-based
SLAM, RGBD images, and contact sensors. In the object manipulation task, the
robot adjusts its initial pose with respect to obstacles and target objects through
RGBD data so it can perform object grasping in different configuration spaces
while avoiding collisions, and updates the information related to the last steps
of the manipulation process using the contact sensors in its hand.

We propose in [5] [6] an active object manipulation systems using a 3-DOF
RGBD camera (height, pan and tilt movements) on top of a service robot and a
6-axis force sensor in the hand. Through this sensors, the robot is able to detect
the obstacle’s position and orientation in robot coordinates while the different
states of the manipulation process take place.

In particular, the robot arrives near the target within an uncertainty given
by the localisation system based on 2D laser scans, but with a localisation error
big enough to affect the performance in the grasping step using only the arm’s
inverse kinematics. Therefore, we propose the use of the upper RGBD camera
to update the robot’s relative position to the furniture and to locate the target
object, and then we use the contact sensor in the robot manipulator to detect
when the robot reaches it.

On the other hand, in the recognition task, in [7] we propose a series of
strategies for object recognition in human-made environments. We have proven
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the feasibility of the proposed methods by evaluating the performance in the
object recognition task as part of the Storing Groceries and Clean Up tasks in
the RoboCup at Home international competition and in the Tidy Up task in en
World Robot Summit.

2.3 Multiview Object Recognition using HMM [8]

We present a very economical framework for multi-view object recognition based
on Hidden Markov Models that can be trained using a really low number of
images, using a flat computer, and in short times; the resulting model is able
to recognise the objects and infer the camera trajectory from a new sequence of
query images, as shown in Figure 1.
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Fig. 1. Multiview object recognition system based on Hidden Markov Models.

We evaluate our system for object recognition with single shot and multi-view
shots in the Columbia Object Image Library — a database of colour images of 100
objects taken from different points of view. The experiments include variations
on the test images for validating the robustness of the method in the presence
of Gaussian white noise, and object rotation in the yaw angle. In Table 1 and
Table 2, you can see the results for different vector quantizer sizes using forward
and backward sequences, respectively. The first column refers to a single shot
inference while the second one shows an inference using 4 shots without noise.
Similarly, the third and fourth columns include Gaussian noise in the query
images. It can be noticed the improvement in classification using multiple shots.

2.4 Sparse-Map: Automatic Topological Map Creation [9]

We present a task-based map compression technique useful for path-planning
and navigation in indoor environments for service robots where, from a point
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clean images noisy images

Cents|| Acc ||Acc fixed|| Acc ||Acc fixed
128 ||0.6456|| 0.7800 ||/0.6368 0.74
256 [(0.7866|| 0.8708 ||0.7213|| 0.8175
512 [(0.8737|| 0.9600 ||0.8793|| 0.9575

Table 1. Accuracy results for different VQ sizes. Forward sequences

clean images noisy images

Cents|| Acc ||Acc fixed|| Acc ||Acc fixed
128 1|0.6275|| 0.7000 ||0.6081|| 0.7175
256 [(0.7300|| 0.8150 ||0.6981|| 0.775
512 || 0.87 0.9475 ||0.8593|| 0.9375

Table 2. Accuracy results for different VQ sizes. Backward sequences

cloud of 3D map features, we calculate a number of clusters based on their spatial
position and generate a sparse 3D representation of the environment (Figure 2).

Moreover, we proposed several metrics to asses the quality and performance
of a map representation and we tested our proposal using a series of point-
cloud benchmarks and clustering techniques, where our method has a comparable
performance using a fraction of the memory footprint than the baselines. In the
experiments, we created an Octomap-based occupancy grid and a Sparse-Map
from the same point clouds. We sample 1000 start and goal points from these
maps and request a plan between those points.

Our first metric, the path length L. We had a similar lengths on average, but
our method computed them faster. This is associated to the smaller graph size
we generate; Sparse-Maps have less than a couple hundred nodes while occu-
pancy grids can have over a thousand nodes to plan. Then, we have the angular
tortuosity T. Here, we observe that our method generated paths with smaller
tortuosity. Next, the translational dispersion D. While Sparse-Map generates
paths with small tortuosity, they presented a higher dispersion; in other words,
our method generates paths with little rotational movement but they are more
jagged than the paths from the dense planner.

Finally, we have released our system as a ROS-based open source library at
https://github.com/JesusCoyotzi/SparseMapper

2.5 Movement planning for grasping

Justina’s manipulators have 7-DOF each one which allow to perform more
human-like movements for grasping. Currently, our manipulation system uses
the point cloud to segment objects above a plane. The resulting sub-cloud as-
sociated to each object is processed with Principal Component Analysis to get
its orientation and general shape. Object shapes are classified as boxes (all sizes
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Fig. 2. Sparse-Map, a full three-dimensional task-specific sparse representation of a
scene via clustering algorithms.

are similar), cylinders (one axis is much lager than the others) or planes (one
axis is much smaller than the others) and an optimal gripper orientation is cal-
culated. We test several orientation candidates and solve the inverse kinematics
for each one using the Newton-Raphson method. Among all feasible orientation
candidates, we choose the one with the smallest articular varlues. Figure 3 show
an example of the grasping system.

Fig. 3. Example of movement planning for grasping

3 Contribution for RoboCup@Home

3.1 RoboCup@Home 2021 WorldWide

Following the challenges in the new-normality, we designed and hosted the
RoboCup@Home 2021 WorldWide, as in [10] [11], where the platform is still



Pumas [OPL] Team Description Paper 7

online and available for interested people to test their service robots’ solutions
to the proposed challenges.

3.2 RoboCup@Home Education

In addition, starting from 2006, RoboCup@Home has been the largest interna-
tional annual competition for autonomous service robots as part of the RoboCup
initiative. However, it is observed that the development curve of the RoboCup@Home
teams have a very steep start. The amount of technical knowledge and resources
(both manpower and cost) required to start a new team has made the event
exclusive to only established research organizations. For instance, in domestic
RoboCup Japan Open challenge, the participating teams in RoboCup@Home
were merely around 10 teams, which are about the same teams for the past few
years. There were actually several new team requests however the development
gap was huge for them to even complete the construction of the robots.

For this reason, RoboCup@Home Education initiative had been started at
RoboCup Japan in 2015. RoboCup@Home Education is an educational initiative
in RoboCup@Home that promotes educational efforts to boost RoboCup@Home
participation and service robot development. Under this initiative, currently
there are 3 projects started in Japan:

RoboCup@Home Education Challenge at RoboCup AsiaPacific2017 Bangkok.
RoboCup@Home Education Challenge at RoboCup Japan Open since 2014.
Development of an educational Open Robot Platform for RoboCup@Home
We hosted RoboCup@Home Education Workshop Rome, Italy,March 15—
16,2017 https://sites.google.com/dis.uniromal.it/athomeedu-rome2017/home
5. Outreach programs (domestic workshops, international academic exchanges,
etc.)

=W

(For more information, visit http://www.robocupathomeedu.org/)

4 Link to Team Video, Team Website

Team Pumas
Official website: http://biorobotics.fi-p.unam.mx

Team Video: https://youtu.be/ozKxjrrxchl
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