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Abstract. This paper presents an overview of our competition robot,
Tinker, including its structure and the innovative technologies employed
in our research. We begin by introducing our research team’s interests
and focus, which center around the development of dexterous manipula-
tion and grasping techniques in robots. Our approach involves tackling
these complex tasks through a learning-based methodology. To facili-
tate our research, we have developed the Sapien simulation platform and
conducted extensive investigations in the field of sim-to-real transfer. We
provide a detailed system flowchart for task implementation and high-
light the core technologies and methods utilized across various tasks.
Additionally, we outline the hardware structure of the robot and offer a
fully open-source chassis design in the appendix, aiming to contribute to
the research community and serve as a valuable reference.

1 Introduction

The Future Robotics Club (FuRoC), comprising undergraduate and graduate
students from various departments such as Electrical Engineering, Mechani-
cal Engineering, Computer Science, and Automation at Tsinghua University,
is deeply committed to the development of advanced domestic robots with true
artificial intelligence capabilities. Our focus extends to crafting a comprehen-
sive robotic hardware platform with capabilities in vision, manipulation, speech,
and navigation. We refine these capabilities through rigorous work in these do-
mains. In recent years, our research has shifted towards integrating learning
with robotics. The goal is to equip our robots with the proficiency to execute
increasingly complex household tasks. This endeavor primarily revolves around
advancements in reinforcement learning and sim-to-real transfer, which have led
to significant breakthroughs in enhancing the success rate of object grasping and
completing intricate tasks.

In our quest for robustness against complex challenges, we have integrated
large language models and 3D navigation technologies into our task execution
strategies, significantly augmenting our robot’s performance. Our commitment



to community contribution and collective progress is demonstrated through the
comprehensive open-sourcing of our simulation environments and hardware plat-
forms, providing valuable references for peer teams.

FuRoC, with its commendable track record in RoboCup@Home - securing
5th place in 2016 and 7th in 2019 - is gearing up for its 8th participation in the
@Home League of the World RoboCup. Despite a hiatus in recent years due to
the pandemic, our team has not waned in its research and development efforts.
We are also enthusiastic about assisting with the organization of competition,
and one of our team members has joined the Robocup@home organizing commit-
tee. As we look forward to rejoining the competition, we are driven by a fervent
desire to demonstrate our advancements and to contribute to the ever-evolving
field of domestic robotics.

2 Scientific Research

In the subsequent section, we will emphasize our team’s contributions to the field
of domestic robotics, particularly in the application of learning and simulation-
to-real methods in the domains of stereovision and manipulation.

Learning-based stereo methods typically necessitate extensive datasets with
depth information, which is challenging to acquire accurately in real-world set-
tings. In contrast, accurate ground truth depth is readily available in simulation
environments. Additionally, accurately manipulating articulated objects poses
a challenging yet essential task for real robot applications. Therefore, our re-
search focus is concentrated on enhancing sim-to-real methods, applying them
specifically to stereo vision and manipulation.

2.1 Advancements in 3D Sensing

Existing depth sensors cannot capture accurate and complete depth of optical-
challenging objects, such as transparent and translucent objects, which limits its
applicability. To address this problem, we have conducted research in two direc-
tions: improving the depth sensing quality in the real world, and synthesizing
realistic noisy depth in simulation.

To improve the the depth
sensing quality in the real

world, we have proposed Ac- — e T—
tiveZero [1I2], a mixed do- N

main learning framework for — i Prescedparyonrea

active stereovision systems &)

without requiring real-world amotcommives I:::::Hi T 5
depth annotation. It com- V) Lo Sty
bines supervised and self- Temportsim R patien [:‘ Lay l:‘
supervised losses in both sim- 25y - - -

ulated and real domains.
This comprehensive approach

Fig. 1. ActiveZero



2. SCIENTIFIC RESEARCH 3

leads to results that surpass
commercial depth sensors, showcasing the effectiveness of each integrated mod-
ule.

To synthesize realistic noisy depth in simulation, we have developed a physics-
grounded simulation pipeline for active stereovision depth sensors, producing
real-time depth maps with material-dependent error patterns akin to real-world
sensors [3]. It effectively transfers perception algorithms and reinforcement learn-
ing policies from simulation to real-world applications without additional fine-
tuning. Integrated into the SAPIEN simulator [4], this system is also open-
sourced to advance vision and robotics research.

Our two advancements mark a significant leap in 3D sensing, especially in
acquiring accurate and complete stereovision depth information, enhancing the
precision and adaptability of home service robots in diverse and challenging
domestic environments.

2.2 Enhancing Articulated Object Manipulation

Recent advancements in domestic robotics have significantly enhanced the ma-
nipulation of articulated objects, a key challenge in the field. Two innovative
frameworks have been developed by us, leveraging the strengths of learning
methodologies and sim-to-real approaches.

Sim2Real?[5] introduces an innovative method for manipulating unseen artic-
ulated objects in real scenarios without human guidance. Leveraging advances in
physics simulation and learning-based perception, it builds an interactive physics
model for long-horizon manipulation trajectory planning. Experimental results
show a high success rate in manipulating articulated objects, with less than 30%
error, and the ability of advanced manipulation including tool use.
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Fig. 2. Sim2Real?

Parallel to this, our Part-Guided 3D RL framework enhances the manipula-
tion of unseen articulated objects using visual input [6]. It merges 2D segmen-
tation with 3D reinforcement learning, improving RL policy training efficiency.



A novel Frame-consistent Uncertainty-aware Sampling strategy improves policy
stability on real robots, enabling the training of a single RL policy for multiple
tasks and showing strong generalizability in simulated and real-world environ-
ments.

Together, these two frameworks mark a significant advancement in the field of
domestic robotics, particularly in handling articulated objects. They showcase
the potential of integrating learning techniques and sim-to-real approaches to
improve the precision and adaptability of robots in executing complex and varied
household tasks.

2.3 Revolutionizing Manipulation Skills with ManiSkill2

The development of generalizable manipulation skills stands as a crucial compo-
nent for domestic robots. Addressing the constraints of current benchmarks, we
have introduced ManiSkill2 [7], marking substantial progress.

ManiSkill2 is distinguished by its extensive range of manipulation task fam-
ilies, featuring over 2000 object models and more than 4 million demonstration
frames. This wide array encompasses various task types, including stationary
and mobile-base tasks, single and dual-arm manipulations, and both rigid and
soft-body object interactions. Moreover, our platform significantly boosts the ef-
ficiency of visual input learning algorithms, with a CNN-based policy capable of
processing about 2000 FPS using a single GPU. This efficiency is complemented
by a render server infrastructure, optimizing memory use across environments.

Our approach has propelled learning in robotic manipulation within the realm
of home service robots, setting new standards for simulation platforms.

2.4 Large Language Model for Robots

To tackle the challenge of implement-

ing large-scale language models in
robotics, we have innovated with the
development of OpenChat, a stream-
lined language model.

Traditional models like GPT and
Llama possess parameter counts often
in the tens of billions, posing signifi-
cant challenges for real-time inference
in robotic applications due to their
immense size. OpenChat [8], however,
is designed with a notably smaller pa-
rameter count of only 7 billion, strik-
ing a balance between compactness
and performance. This reduction in
size enables the model to achieve per-
formance levels comparable to GPT-
3.5, yet it remains sufficiently com-
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pact for real-time inference on robots, even those equipped with standard graph-
ics cards, such as RTX 4090.

The development of OpenChat represents a crucial step forward in our work,
particularly in applying advanced decision-making methods using large mod-
els, like function calls, to robotics. This ongoing research has the potential to
significantly enhance the capabilities of robots like Tinker in the near future,
expanding their computational efficiency and decision-making prowess. The ca-
pability of OpenChat is shown in Fig. [3| For more information, please refer to
openchat library.

3 Technical Contributions

In this section, we will delve into our technical contributions, emphasizing how
we integrate or enhance existing technologies to optimize Tinker’s performance
in household scenarios. This part is focus on improving task success rates and
robustness in the presence of disturbances. Additionally, we provide some open-
source resources for the community, including a mecanum wheel chassis solution
and an simulation based on ROS and Gazebo.

3.1 3D Navigation

We have implemented the navigation stack based on the Nav2 stack. To achieve
customized and intelligent navigation behavior, we have employed behavior trees
to orchestrate multiple independent modular servers. In the local planner, we
utilize STVL (Spatial-Temporal Voxel Layer), a state-of-the-art 3D perception
plugin, within our local static costmap layer. The inclusion of the STVL layer
greatly facilitates the modeling of structured building environments, particularly
in home scenarios.

In our Tinker project, we incorporate a compact and lightweight 3D lidar,
enabling 360-degree perception. This lidar module enhances our obstacle avoid-
ance capabilities by leveraging the power of 3D perception. To effectively utilize
this capability, we employ a slicing technique on the point cloud data, based on
the z-coordinate, and fuse the sliced data to execute obstacle avoidance. This
implementation enables spatial obstacle avoidance, which provides a higher level
of security compared to traditional 2D obstacle avoidance, especially for irreg-
ularly shaped obstacles. Furthermore, we plan to conduct further research on
direct 3D obstacle avoidance for Tinker in the upcoming year.

3.2 Human Tracking

In the human tracking tasks, we primarily employ the STARK algorithm from
the mmtracking library. STARK is an advanced single-object tracking algorithm
known for its effectiveness in prolonged tracking of targets in challenging condi-
tions and tracking stability in the presence of disturbances.


https://github.com/imoneoi/openchat
https://github.com/open-mmlab/mmtracking

To improve tracking in complex scenarios with multiple individuals and en-
hance the robot’s ability to recover tracking after losing the target or experienc-
ing frame drops, we have introduced some multi-modal models. These models
adeptly process input image information and extract characteristics of individ-
uals in a textual format, allowing the robot to genuinely understand whom to
track. Furthermore, they can locate the bounding box of person based on the
extracted textual features. Specifically, we incorporate Grounding Dino [9] that
combines text and image modalities. It generates bounding boxes based on in-
put textual content, aligning with the specified features. At the beginning of the
tracking task, we input several frames of the target person into a large model
resembling GPT-4, requesting the model to output the most prominent features
of the person. During tracking, we periodically invoke Grounding Dino to gen-
erate bounding boxes corresponding to the specified features and compare them
with the current tracking target. In case of target loss, the robot rotates in place
to find and resume tracking the person matching the text features.

3.3 Open Source Chassis and Simulation

To foster community research, we have open-sourced both the chassis we devel-
oped and the simulated environments we constructed. Opting for a mecanum
wheel design for the chassis, we aimed to provide the robot with lateral mo-
bility, particularly valuable in confined home environments. This design allows
the robot to move left and right, facilitating the grasping of objects at different
positions on a tabletop without the need for multiple rotations. The comprehen-
sive mechatronics solution, including the chassis assembly and accompanying
components like drivers and odometry, is available on GitHub tinker_chassis|
We have established two distinct simulation platforms, each serving different
purposes. The first simulation platform is built on ROS2 Humble and Gazebo,
primarily utilized for navigation testing, Movelt evaluations, and various ROS
message, service, and functionality tests. The second simulation platform is based
on SAPIEN and ManiSkill2, specifically tailored for learning and training related
to manipulation tasks. Both simulation platforms have been open-sourced on
GitHub [Tinker_gazebo_ros2_simulation, Tinker_sapien_simulation.

4 Domestic Task

In the subsequent section, we will present a concise overview of the specific
system implementation and relevant technologies employed by the Tinker robot
to successfully complete RoboCup tasks. We will refrain from duplicating the
detailed methods discussed in the preceding section.

4.1 Receptionist

Speech We have implemented OpenAI’s Whisper for offline speech recognition.
To enable our robot to comprehend voice commands beyond mere recognition, we


https://github.com/tinkerfuroc/tinker_chassis
https://github.com/tinkerfuroc/Tinker_gazebo_ros2_simulation
https://github.com/tinkerfuroc/Tinker_sapien_simulation
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have integrated OpenChat to enhance its understanding of varied expressions. In
the receptionist task, we employ prompts to ensure the robot accurately captures
guests’ names and preferred beverages under different phrasings.

Face Recognition In order to support human-robot interaction, the robot is
required to recognize different masters or guests in domestic service. We es-
tablished a face recognition system with two steps: enrollment and recognition.
During the enrollment section, a person will be asked to stand in front of the
RGB camera. The face detector based on Haar feature from OpenCV is applied
and the detected feature will be stored.In the recognition section, We employ the
ArcFace algorithm, a deep learning-based approach to achieve face recognition
by computing the similarity between feature vectors extracted from different fa-
cial images. The similarity between different feature vectors (persons) will tell
who is the unknown person.

4.2 Serve Breakfast

Manipulation In order to complete the tasks of delivering things, Tinker needs
to finish two related subtasks, montion planning and grasping. With a 6-DOF
URS arm, Tinker can reach amlost everywhere fexibly in the three-dimensional
space. Tinker carries out its montion planning mainly with the help of Movelt,
using the default OMPL algorithm and Rucking algorithm for its path planning
and trajectory generation respectively. To avoid the potential collision with other
parts, we restrict the work space of UR5 with yaml files. Tinker also converts
the point clouds from the camera into three-dimensional information to avoid
these obstacles in path planning. In the process of grasping, we pre-set the angle
of the claw closure and the maximum force to ensure that the grasp force will
not damage the objects. The built-in current feedback in Robotiq also plays a
role in this process.

Plane Extraction Real-time plane extraction in 3D point clouds plays a crucial
role in many robotics applications. For example, in this task, Tinker needs to
distinguish the tabletop from other interfering planes in its field of view. We
present an innovative algorithm to reliably detect multiple planes in organized
point clouds obtained from devices - such as Realsense sensors, in real time.
By uniformly dividing such a point cloud into non-overlapping groups of points
in the image space, we are able to construct a graph in which the nodes and
edges represent a group of points and their neighborhood respectively. We then
perform an hierarchical clustering on this graph to systematically merge nodes
that belong to the same plane until the squared error of the plane fitting mean
exceeds a threshold. Finally we refine the extracted planes using pixel-wise region
growing. Our experiments demonstrate that the proposed algorithm can reliably
detect all major planes in the scene at a frame rate of more than 15Hz (for point
clouds generated by 1096 x 720 depth images), which is much faster than many
other algorithms we know.



Object Recognition Tinker uses a two-phase approach to recognize objects
and precisely manipulate them. In the first phase, a point cloud is built according
to the features collected by the Realsense depth camera, and we use Fast Plane
Extraction in Organized Point Clouds inside. In simple terms, we first extract
the object from the two-dimensional picture, use the ransac and least square
method to fit its shape parameters, and then use the known three-dimensional
spatial position information to reproject it into the three-dimensional space.

For object classification, another image processing method is implemented.
We use YOLOVS [1I0)] for general object type detection, which is a precise while
light-weight neural network, designed for general object detection and instance
segmentation.
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Robot Tinker Hardware and Software Description

Mechanical specifications of Robot Tinker are as fol- [ e kit

lows:

Base: Self-built base with a mecanum wheel de- | yuessosos
sign, 2m/s max speed.

Torso: Aluminum extrusions.

Arm: Mounted on torso. Universal-Robots URbH
robot arm for accessing objects. Maximum load:
18.4kg.

End-Effector: Mounted on arm. Robotigq-2f140
mechanical gripper.

Head: 2DOF (pan and tilt)

Robot dimensions: height: 1.42m (max), width:
0.58m, depth 0.58m. Fig. 4. Tinker
Robot weight: 50kg.

Computer | ( 2

Control Box

““__ | RoboMaster GM6020

Also our robot incorporates the following devices:

Dji battery with DCDC transformer for the other equipments
DJI GM6020 motors

Azure Kinect DK depth camera

Realsense D4351 camera

RODE VideoMicro II, Ultra-compact Microphone

Livox MID-360 laser scanner

Encoder on motors

Tinker Software Description

For our robot we are using the following software:

Platform: Ubuntu 22.04 Operating System and ROS2 Humble.
Navigation: ROS2 NAV?2

Face recognition: Acrface

Object recognition and segmentation: YOLOv8

Human tracking: Grounding Dino

Speech recognition: Openai Whisper

Speech generation: ROS2 TTS

Manipulation: Movelt2

Simulation: SAPIEN

LLM: OpenChat

External Devices

ROG laptop with RTX 4070

Robot software and hardware specification sheet
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