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Abstract. This paper is the team description paper of SKUBA for our
engagement in the World RoboCup 2024 @Home Social Standard Plat-
form League held in Eindhoven, Netherlands. Our team aspires to par-
ticipate in the @Home Standard Platform League using the PEPPER
robot. The PEPPER robot is renowned for its potent human interaction
capabilities and accessible software conducive to developmental learn-
ing. The utilization of the PEPPER robot is envisaged to facilitate the
augmentation of the team’s skills, aligning with the principal research
objectives.

1 Introduction

Since 2008, the SKUBA team has actively participated in the RoboCup compe-
tition, initially engaging in the SSL competition and achieving a notable third-
place finish in our debut year (2008). Subsequently, from 2009 to 2012, we se-
cured first place four consecutive times. In 2012, the team shifted our focus to the
RoboCup@Home league, culminating in a victory at the 2019 RoboCup@Home
Education Competition in Sydney, Australia. We got a fourth-place position in
the RoboCup@Home Open Platform League during RoboCup 2022 in Bangkok.
In the RoboCup@Home Social Standard Platform 2023 in Bordeaux, our team
marked our debut in this league. Comprising undergraduate and graduate stu-
dents from Kasetsart University’s Faculty of Engineering in Thailand, our team
is guided by experienced faculty members. It remains dedicated to offering prac-
tical solutions in the field of service robots. Looking ahead, we are enthusiastic
about our involvement in the World RoboCup2024@Home Social Standard Plat-
form. The overall software is shown in Figure 1.
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Fig. 1. Software Pipeline

2 Robot Vision

2.1 Object Detection and Recognition

In the previous year, our real-time object detection system utilized YOLOv4-
tiny. However, for the current year, we have transitioned to YOLOv7-tiny for
object detection and recognition, as shown in Figure 2, developed by Wang,
C.Y., Bochkovskiy, A., and Liao, H.Y.M.[10] This newer version optimizes net-
work performance through the implementation of trainable bag-of-freebies meth-
ods, effectively reducing parameters and conserving computational resources. We
integrate YOLOvT with the synthetic dataset[4] generator that can generate im-
ages with various backgrounds to reduce the time to take a picture and increase
the accuracy of the object detection system. The example of output from our
synthetic dataset generator is shown in Figure 3.

Fig. 2. Object Detection Fig. 3. Synthetic data
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2.2 Pose estimation

OpenPose, an efficient real-time 2D multi-person keypoint detection system, is
tailored for streamlined processing on resource-constrained environments, includ-
ing CPUs[1]. The human action recognition system integrates OpenPose with an
LSTM (Long Short-Term Memory) model. The training procedure involves the
utilization of keypoints and images to construct a dataset incorporating actions
detected by OpenPose. Subsequently, this dataset is employed to train the LSTM
model, culminating in the development of a fall detection mode.

2.3 Hand gesture recognition

Our hand gesture recognition system is achieved through the integration of
MediaPipe[6] and TensorFlow. By leveraging MediaPipe, we extract key land-
marks (keypoints) from the hand. These keypoints are then fed into our Ten-
sorFlow neural network, which has been specifically designed for the purpose of
hand gesture recognition. Our innovative approach combines the robust hand-
tracking capabilities of MediaPipe with the computational power and flexibility
of TensorFlow. This contributes to the development of an effective and adapt-
able hand gesture recognition model that is capable of recognizing a wide range
of hand gestures. The result from out system as in Figure 4.

16.54

Fig. 4. Hand gesture recognition
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2.4 Human follower

In the pursuit of human tracking, a 3D sensor is employed to discern the spa-
tial coordinates of the person within the point cloud. This involves identifying
the region occupied by a person and subsequently computing their precise 3D
position. The derived spatial information is then transmitted to the navigation
stack, facilitating targeted navigation while mitigating potential obstacles. Con-
currently, OpenCV is utilized to ascertain the color of the person’s attire, thereby
preventing the inadvertent tracking of an incorrect person. As shown in Figure
5, the green area is the data from the person’s 3D camera that we use to track
the person and find the person’s outfit color.

Fig. 5. Hand gesture recognition

3 Localization and Navigation

3.1 Visual simultaneous localization and mapping (vSLAM)

In response to the limitations posed by the sensors on the Pepper robot, we
opted for a visual Simultaneous Localization and Mapping (SLAM) approach
to address its localization challenges. Leveraging the richness of information in-
herent in 3D camera data, we employed the ORB-SLAM algorithm with the 3D
camera to localize the robot effectively [8]. Subsequently, a fusion process was
implemented, integrating the outputs from ORB-SLAM with additional data
streams obtained from the robot’s encoder and LiDAR sensors. The amalga-
mation of these diverse sensor inputs was facilitated by applying an Extended
Kalman Filter (EKF) by robot localization package [7], contributing to a refined
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and more accurate estimation of the robot’s positional coordinates. This inte-
grated methodology enhances the overall localization precision of the Pepper
robot, compensating for the limitations of its sensors through the synergistic
exploitation of visual and depth-based sensor information. The output is shown
in Figure 6.

Fig. 6. ORB-SLAM with Pepper

3.2 Navigation

Navigation is a key element enabling the robot to reach desired locations. There
are three sections: mapping, localization, and path planning. The Mapping func-
tion generates grid maps by processing laser range data from the GMapping li-
brary with very efficient Rao-Blackwellized particles[3]. AMCL (Adaptive Monte
Carlo localization) is a probabilistic localization process for two-dimensional
robot localization that uses a particle filter to compare a robot’s posture to a
preset map[11]. Path planning is a robot’s ability to discover the optimum path
to a destination while avoiding obstacles utilizing the DWA (Dynamic Window
Approach)[2], which is often utilized by local planners. The example of our robot
navigation is shown in Figure 7.
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Fig. 7. ROS navigation stack with Pepper

4 Speech Recognition

In pursuit of robust speech recognition capabilities, the Whisper[9] for Speech-
To-Text system was selected due to its proficiency in recognizing multiple lan-
guages with superior accuracy compared to Pepper’s native speech-to-text SDK.
Additionally, for Text-To-Speech functionality, we employ the Pepper Text-To-
Speech SDK, chosen for its adequacy and optimization specifically tailored to
the acoustic properties of Pepper’s speaker system.

5 Mission States Planner

SMACH [5] is employed for constructing hierarchical state machines, wherein
nodes represent distinct states of execution, and edges delineate the transitions
between nodes corresponding to their respective outcomes. The utilization of
SMACH facilitates the rapid development of resilient robot behavior character-
ized by maintainable and modular code.

6 Experiment and result

At the qualified social standard platform league category 2024 round the task

chosen was Carry my luggage, based on the competition task according to the

rules of 2023. The objective of this task focuses on the efficiency of vision by

obtaining hand gestures, person detection, human following, and navigation.
Experiment VDO: https: //youtu. be/ TVMHZITns4I


https://youtu.be/7VMHZ97ns4I
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7 Competition result

Our achievements in past competitions in @QHOME SSPL, OPL, and EDUCA-
TION league are shown in Table. 1

Table 1. Competition Result

Competition Result

RoboCup 2015 Hefei @HOME OPL 7th
RoboCup Japan Open 2017 Nagoya @QHOME EDU 2nd
RoboCup APAC 2017 Bangkok @QHOME OPL 2nd
RoboCup 2018 Montreal @HOME EDU 2nd
RoboCup 2019 Sydney @HOME EDU 1st
RoboCup Japan Open 2019 Nagaoka @HOME EDU 1st
RoboCup 2021 Online Challenge @HOME EDU

- Best Technical Paper
- People’s Choice Award

RoboCup APAC 2021 Aichi @QHOME OPL 3rd
RoboCup 2022 Bangkok @HOME OPL 4th
RoboCup 2023 Bordeaux @HOME SSPL 4th

8 Conclusion

In summary, this team description paper outlines our strategy for addressing
the challenges posed by RoboCup 2024. The results presented highlight the suc-
cessful integration of diverse capabilities to tackle the challenge effectively, with
ongoing developments to enhance our repertoire. Drawing upon our extensive
past experiences, the SKUBA team asserts confidence in our capabilities and
qualifications, positioning us as well-prepared contenders for participation in
the competition.
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Pepper Software and External Devices

We use a standard SoftBank Robotics Pepper robot
unit.

Robot’s Software Description

For our Pepper robot, we are using the following soft-
ware:

Platform: Ubuntu 16.04 (Xenial Xerus) / Ubuntu
20.04 (Focal Fossa)

ROS version: Kinetic/Noetic

— Face recognition: Naoqi APIs

Object recognition: Yolo-tiny V7

Speech interaction: Whisper & Naoqi APIs

— Pose estimation: OpenPose & MediaPipe
Manipulation: Moveit!

Fig. 8. Pepper Robot

External Devices

Pepper robot relies on the following external hardware:

Main Computer

— CPUs: Intel core i7-7700HQ
— GPUs: Nvidia GTX 1070
RAM: 16GB

— OS: Ubuntu 20.04

Server for Naoqi SDK

— Virtual Machine using VMWare
— CPUs: 4vCPU

RAM: 8GB

— OS: Ubuntu 16.04

Robot software and hardware specification sheet
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